Matches in SemOpenAlex for { <https://semopenalex.org/work/W2026422512> ?p ?o ?g. }
- W2026422512 endingPage "303" @default.
- W2026422512 startingPage "295" @default.
- W2026422512 abstract "The main objective of the present study was to apply the ANN (artificial neural network) model with the TLBO (teaching–learning-based optimization) algorithm to estimate energy consumption in Turkey. Gross domestic product, population, import, and export data were selected as independent variables in the model. Performances of the ANN–TLBO model and the classical back propagation-trained ANN model (ANN–BP (teaching–learning-based optimization) model) were compared by using various error criteria to evaluate the model accuracy. Errors of the training and testing datasets showed that the ANN–TLBO model better predicted the energy consumption compared to the ANN–BP model. After determining the best configuration for the ANN–TLBO model, the energy consumption values for Turkey were predicted under three scenarios. The forecasted results were compared between scenarios and with projections by the MENR (Ministry of Energy and Natural Resources). Compared to the MENR projections, all of the analyzed scenarios gave lower estimates of energy consumption and predicted that Turkey's energy consumption would vary between 142.7 and 158.0 Mtoe (million tons of oil equivalent) in 2020." @default.
- W2026422512 created "2016-06-24" @default.
- W2026422512 creator A5002835391 @default.
- W2026422512 creator A5045464225 @default.
- W2026422512 creator A5078925179 @default.
- W2026422512 creator A5091491905 @default.
- W2026422512 date "2014-10-01" @default.
- W2026422512 modified "2023-10-18" @default.
- W2026422512 title "Estimates of energy consumption in Turkey using neural networks with the teaching–learning-based optimization algorithm" @default.
- W2026422512 cites W1498436455 @default.
- W2026422512 cites W165199097 @default.
- W2026422512 cites W1967910184 @default.
- W2026422512 cites W1973172155 @default.
- W2026422512 cites W1973669221 @default.
- W2026422512 cites W1974519600 @default.
- W2026422512 cites W1976331066 @default.
- W2026422512 cites W1976899172 @default.
- W2026422512 cites W1977912830 @default.
- W2026422512 cites W1978853832 @default.
- W2026422512 cites W1983732626 @default.
- W2026422512 cites W1983833629 @default.
- W2026422512 cites W1984368619 @default.
- W2026422512 cites W1989783051 @default.
- W2026422512 cites W1995433480 @default.
- W2026422512 cites W1999209109 @default.
- W2026422512 cites W1999284878 @default.
- W2026422512 cites W2001422417 @default.
- W2026422512 cites W2002899783 @default.
- W2026422512 cites W2004066808 @default.
- W2026422512 cites W2005248934 @default.
- W2026422512 cites W2008031251 @default.
- W2026422512 cites W2013539514 @default.
- W2026422512 cites W2017748170 @default.
- W2026422512 cites W2019316090 @default.
- W2026422512 cites W2021490042 @default.
- W2026422512 cites W2023702796 @default.
- W2026422512 cites W2030543747 @default.
- W2026422512 cites W2032654523 @default.
- W2026422512 cites W2033864775 @default.
- W2026422512 cites W2033937481 @default.
- W2026422512 cites W2035661269 @default.
- W2026422512 cites W2046933993 @default.
- W2026422512 cites W2052214993 @default.
- W2026422512 cites W2057323528 @default.
- W2026422512 cites W2057621530 @default.
- W2026422512 cites W2058591206 @default.
- W2026422512 cites W2058791286 @default.
- W2026422512 cites W2075445042 @default.
- W2026422512 cites W2076859799 @default.
- W2026422512 cites W2081381307 @default.
- W2026422512 cites W2083470869 @default.
- W2026422512 cites W2083986273 @default.
- W2026422512 cites W2091591642 @default.
- W2026422512 cites W2092315180 @default.
- W2026422512 cites W2094340389 @default.
- W2026422512 cites W2113414203 @default.
- W2026422512 cites W2140327551 @default.
- W2026422512 cites W2154512226 @default.
- W2026422512 cites W2182790131 @default.
- W2026422512 doi "https://doi.org/10.1016/j.energy.2014.07.078" @default.
- W2026422512 hasPublicationYear "2014" @default.
- W2026422512 type Work @default.
- W2026422512 sameAs 2026422512 @default.
- W2026422512 citedByCount "89" @default.
- W2026422512 countsByYear W20264225122014 @default.
- W2026422512 countsByYear W20264225122015 @default.
- W2026422512 countsByYear W20264225122016 @default.
- W2026422512 countsByYear W20264225122017 @default.
- W2026422512 countsByYear W20264225122018 @default.
- W2026422512 countsByYear W20264225122019 @default.
- W2026422512 countsByYear W20264225122020 @default.
- W2026422512 countsByYear W20264225122021 @default.
- W2026422512 countsByYear W20264225122022 @default.
- W2026422512 countsByYear W20264225122023 @default.
- W2026422512 crossrefType "journal-article" @default.
- W2026422512 hasAuthorship W2026422512A5002835391 @default.
- W2026422512 hasAuthorship W2026422512A5045464225 @default.
- W2026422512 hasAuthorship W2026422512A5078925179 @default.
- W2026422512 hasAuthorship W2026422512A5091491905 @default.
- W2026422512 hasConcept C105795698 @default.
- W2026422512 hasConcept C11413529 @default.
- W2026422512 hasConcept C119599485 @default.
- W2026422512 hasConcept C119857082 @default.
- W2026422512 hasConcept C126255220 @default.
- W2026422512 hasConcept C127413603 @default.
- W2026422512 hasConcept C144024400 @default.
- W2026422512 hasConcept C154945302 @default.
- W2026422512 hasConcept C186370098 @default.
- W2026422512 hasConcept C2780165032 @default.
- W2026422512 hasConcept C2987595161 @default.
- W2026422512 hasConcept C30772137 @default.
- W2026422512 hasConcept C33923547 @default.
- W2026422512 hasConcept C36289849 @default.
- W2026422512 hasConcept C41008148 @default.
- W2026422512 hasConcept C50644808 @default.
- W2026422512 hasConceptScore W2026422512C105795698 @default.
- W2026422512 hasConceptScore W2026422512C11413529 @default.
- W2026422512 hasConceptScore W2026422512C119599485 @default.