Matches in SemOpenAlex for { <https://semopenalex.org/work/W2026448017> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2026448017 endingPage "280" @default.
- W2026448017 startingPage "273" @default.
- W2026448017 abstract "오늘날 컴퓨팅 환경의 진보와 웹의 이용이 활발해짐에 따라 오프라인에서 이루어졌던 있었던 많은 서비스들과 상품의 제공이 웹에서 이루어지고 있다. 이러한 웹 기반 서비스 및 상품은 개인에 적합하게 취사선택되어 제공되는 추세이다. 이렇듯 개인에 적합한 서비스 및 상품의 선택과 제공을 위한 패러다임을 개인화(personalization)라 한다. 개인화된 서비스 및 상품의 제공을 위한 분야로서 연구된 것이 추천(recommendation)이다. 그러나 이러한 추천 기법들은 신규 사용자에게 적합한 추천을 제공하지 못하는 문제와 사용자의 상품에 대한 평점에만 의존하여 추천을 생성한다는 계산 공간에서의 제약 사항을 가지고 있다. 두 문제 모두 추천 분야에서 지속적인 관심을 보이는 분야로서 신규사용자 추천 문제의 경우는 신규 사용자의 평점이 없기 때문에 유사 사용자들을 분류할 수 없음에 기인한다. 그리고 추천 공간 제약에 따른 문제는 추천 차원의 추가에 따른 처리 비용이 급격히 증가한다는 문제를 가지고 있기 때문에 쉽게 접근하기 어렵다. 따라서 본 논문에서는 신규사용자 추천 향상을 위한 기법과 평점 예측 시 예측에 대한 가중치를 적용하는 기법을 제안한다. Today, many services and products that used to be only provided on offline have been being provided on the web according to the improvement of computing environment and the activation of web usage. These web-based services and products tend to be provided to customer by customer's preferences. This paradigm that considers customer's opinions and features in selecting is called personalization. The related research field is a recommendation. And this recommendation is performed by recommender system. Generally the recommendation is made from the preferences and tastes of customers. And recommender system provides this recommendation to user. However, the recommendation techniques have a couple of problems; they do not provide suitable recommendation to new users and also are limited to computing space that they generate recommendations which is dependent on ratings of products by users. Those problems has gathered some continuous interest from the recommendation field. In the case of new users, so similar users can't be classified because in the case of new users there is no rating created by new users. The problem of the limitation of the recommendation space is not easy to access because it is related to moneywise that the cost will be increasing rapidly when there is an addition to the dimension of recommendation. Therefore, I propose the solution of the recommendation problem of new user and the usage of item quality as weight to improve the accuracy of recommendation in this paper." @default.
- W2026448017 created "2016-06-24" @default.
- W2026448017 creator A5027745402 @default.
- W2026448017 creator A5047150963 @default.
- W2026448017 creator A5054773745 @default.
- W2026448017 creator A5061520631 @default.
- W2026448017 creator A5062345522 @default.
- W2026448017 date "2009-04-30" @default.
- W2026448017 modified "2023-10-16" @default.
- W2026448017 title "Weight Based Technique For Improvement Of New User Recommendation Performance" @default.
- W2026448017 cites W1510348757 @default.
- W2026448017 cites W1966553486 @default.
- W2026448017 cites W1999047234 @default.
- W2026448017 cites W2110325612 @default.
- W2026448017 cites W2117354486 @default.
- W2026448017 cites W2123701797 @default.
- W2026448017 cites W2124591829 @default.
- W2026448017 cites W2137728971 @default.
- W2026448017 cites W2147654806 @default.
- W2026448017 cites W2171960770 @default.
- W2026448017 cites W2341865734 @default.
- W2026448017 doi "https://doi.org/10.3745/kipstd.2009.16-d.2.273" @default.
- W2026448017 hasPublicationYear "2009" @default.
- W2026448017 type Work @default.
- W2026448017 sameAs 2026448017 @default.
- W2026448017 citedByCount "0" @default.
- W2026448017 crossrefType "journal-article" @default.
- W2026448017 hasAuthorship W2026448017A5027745402 @default.
- W2026448017 hasAuthorship W2026448017A5047150963 @default.
- W2026448017 hasAuthorship W2026448017A5054773745 @default.
- W2026448017 hasAuthorship W2026448017A5061520631 @default.
- W2026448017 hasAuthorship W2026448017A5062345522 @default.
- W2026448017 hasBestOaLocation W20264480171 @default.
- W2026448017 hasConcept C111472728 @default.
- W2026448017 hasConcept C111919701 @default.
- W2026448017 hasConcept C136764020 @default.
- W2026448017 hasConcept C138885662 @default.
- W2026448017 hasConcept C183003079 @default.
- W2026448017 hasConcept C202444582 @default.
- W2026448017 hasConcept C23123220 @default.
- W2026448017 hasConcept C2778572836 @default.
- W2026448017 hasConcept C2779530757 @default.
- W2026448017 hasConcept C33676613 @default.
- W2026448017 hasConcept C33923547 @default.
- W2026448017 hasConcept C41008148 @default.
- W2026448017 hasConcept C557471498 @default.
- W2026448017 hasConcept C9652623 @default.
- W2026448017 hasConceptScore W2026448017C111472728 @default.
- W2026448017 hasConceptScore W2026448017C111919701 @default.
- W2026448017 hasConceptScore W2026448017C136764020 @default.
- W2026448017 hasConceptScore W2026448017C138885662 @default.
- W2026448017 hasConceptScore W2026448017C183003079 @default.
- W2026448017 hasConceptScore W2026448017C202444582 @default.
- W2026448017 hasConceptScore W2026448017C23123220 @default.
- W2026448017 hasConceptScore W2026448017C2778572836 @default.
- W2026448017 hasConceptScore W2026448017C2779530757 @default.
- W2026448017 hasConceptScore W2026448017C33676613 @default.
- W2026448017 hasConceptScore W2026448017C33923547 @default.
- W2026448017 hasConceptScore W2026448017C41008148 @default.
- W2026448017 hasConceptScore W2026448017C557471498 @default.
- W2026448017 hasConceptScore W2026448017C9652623 @default.
- W2026448017 hasIssue "2" @default.
- W2026448017 hasLocation W20264480171 @default.
- W2026448017 hasOpenAccess W2026448017 @default.
- W2026448017 hasPrimaryLocation W20264480171 @default.
- W2026448017 hasRelatedWork W1971498918 @default.
- W2026448017 hasRelatedWork W1992497991 @default.
- W2026448017 hasRelatedWork W2025955234 @default.
- W2026448017 hasRelatedWork W2102548129 @default.
- W2026448017 hasRelatedWork W2171080633 @default.
- W2026448017 hasRelatedWork W2400376450 @default.
- W2026448017 hasRelatedWork W2519424674 @default.
- W2026448017 hasRelatedWork W2564903370 @default.
- W2026448017 hasRelatedWork W2618810612 @default.
- W2026448017 hasRelatedWork W2755907721 @default.
- W2026448017 hasRelatedWork W2773249337 @default.
- W2026448017 hasRelatedWork W2801930107 @default.
- W2026448017 hasRelatedWork W2906841333 @default.
- W2026448017 hasRelatedWork W3080500406 @default.
- W2026448017 hasRelatedWork W3146996481 @default.
- W2026448017 hasRelatedWork W3170688954 @default.
- W2026448017 hasRelatedWork W3213458932 @default.
- W2026448017 hasRelatedWork W69522661 @default.
- W2026448017 hasRelatedWork W786568768 @default.
- W2026448017 hasRelatedWork W2132432962 @default.
- W2026448017 hasVolume "16D" @default.
- W2026448017 isParatext "false" @default.
- W2026448017 isRetracted "false" @default.
- W2026448017 magId "2026448017" @default.
- W2026448017 workType "article" @default.