Matches in SemOpenAlex for { <https://semopenalex.org/work/W2026486475> ?p ?o ?g. }
- W2026486475 endingPage "1596" @default.
- W2026486475 startingPage "1586" @default.
- W2026486475 abstract "The Kernel method is a powerful tool for extending an algorithm from linear to nonlinear case. Metalearning algorithm learns the base learning algorithm, thus to improve performance of the learning system. Usually, metalearning algorithms exhibit faster convergence rate and lower Mean-Square Error (MSE) than the corresponding base learning algorithms. In this paper, we present a kernelized metalearning algorithm, named KIMEL, which is a metalearning algorithm in the Reproducing Kernel Hilbert Space (RKHS). The convergence analyses of the KIMEL algorithm are performed in detail. To demonstrate the effectiveness and advantage of the proposed algorithm, we firstly apply the algorithm to a simple example of nonlinear channel equalization. Then we focus on a more practical application in blind Image Quality Assessment (IQA). Experimental results show that the KIMEL algorithm has superior performance." @default.
- W2026486475 created "2016-06-24" @default.
- W2026486475 creator A5020076229 @default.
- W2026486475 creator A5020795553 @default.
- W2026486475 creator A5027039492 @default.
- W2026486475 creator A5039523753 @default.
- W2026486475 date "2013-06-01" @default.
- W2026486475 modified "2023-09-26" @default.
- W2026486475 title "KIMEL: A kernel incremental metalearning algorithm" @default.
- W2026486475 cites W1492221128 @default.
- W2026486475 cites W1563088657 @default.
- W2026486475 cites W1601740268 @default.
- W2026486475 cites W1819447595 @default.
- W2026486475 cites W1962010357 @default.
- W2026486475 cites W1986280275 @default.
- W2026486475 cites W1987827102 @default.
- W2026486475 cites W2002260191 @default.
- W2026486475 cites W2044770391 @default.
- W2026486475 cites W2071295200 @default.
- W2026486475 cites W2089500640 @default.
- W2026486475 cites W2093319585 @default.
- W2026486475 cites W2097415537 @default.
- W2026486475 cites W2097488004 @default.
- W2026486475 cites W2097872774 @default.
- W2026486475 cites W2105591650 @default.
- W2026486475 cites W2107476778 @default.
- W2026486475 cites W2110329341 @default.
- W2026486475 cites W2115947173 @default.
- W2026486475 cites W2117513046 @default.
- W2026486475 cites W2119076496 @default.
- W2026486475 cites W2121281940 @default.
- W2026486475 cites W2123649031 @default.
- W2026486475 cites W2124562516 @default.
- W2026486475 cites W2124776405 @default.
- W2026486475 cites W2133247229 @default.
- W2026486475 cites W2133665775 @default.
- W2026486475 cites W2138507770 @default.
- W2026486475 cites W2139212933 @default.
- W2026486475 cites W2140094223 @default.
- W2026486475 cites W2143901157 @default.
- W2026486475 cites W2147940013 @default.
- W2026486475 cites W2148450540 @default.
- W2026486475 cites W2152404931 @default.
- W2026486475 cites W2153582625 @default.
- W2026486475 cites W2155151262 @default.
- W2026486475 cites W2159269332 @default.
- W2026486475 cites W2160208155 @default.
- W2026486475 cites W2160498832 @default.
- W2026486475 cites W2163370434 @default.
- W2026486475 cites W2167932108 @default.
- W2026486475 cites W2285257517 @default.
- W2026486475 cites W3193477162 @default.
- W2026486475 cites W2134883135 @default.
- W2026486475 doi "https://doi.org/10.1016/j.sigpro.2012.07.023" @default.
- W2026486475 hasPublicationYear "2013" @default.
- W2026486475 type Work @default.
- W2026486475 sameAs 2026486475 @default.
- W2026486475 citedByCount "8" @default.
- W2026486475 countsByYear W20264864752014 @default.
- W2026486475 countsByYear W20264864752015 @default.
- W2026486475 countsByYear W20264864752016 @default.
- W2026486475 countsByYear W20264864752017 @default.
- W2026486475 countsByYear W20264864752019 @default.
- W2026486475 crossrefType "journal-article" @default.
- W2026486475 hasAuthorship W2026486475A5020076229 @default.
- W2026486475 hasAuthorship W2026486475A5020795553 @default.
- W2026486475 hasAuthorship W2026486475A5027039492 @default.
- W2026486475 hasAuthorship W2026486475A5039523753 @default.
- W2026486475 hasConcept C11413529 @default.
- W2026486475 hasConcept C114614502 @default.
- W2026486475 hasConcept C121332964 @default.
- W2026486475 hasConcept C122280245 @default.
- W2026486475 hasConcept C12267149 @default.
- W2026486475 hasConcept C127162648 @default.
- W2026486475 hasConcept C134306372 @default.
- W2026486475 hasConcept C154945302 @default.
- W2026486475 hasConcept C158622935 @default.
- W2026486475 hasConcept C162324750 @default.
- W2026486475 hasConcept C2777303404 @default.
- W2026486475 hasConcept C31258907 @default.
- W2026486475 hasConcept C33923547 @default.
- W2026486475 hasConcept C41008148 @default.
- W2026486475 hasConcept C50522688 @default.
- W2026486475 hasConcept C57869625 @default.
- W2026486475 hasConcept C62520636 @default.
- W2026486475 hasConcept C62799726 @default.
- W2026486475 hasConcept C74193536 @default.
- W2026486475 hasConcept C80884492 @default.
- W2026486475 hasConceptScore W2026486475C11413529 @default.
- W2026486475 hasConceptScore W2026486475C114614502 @default.
- W2026486475 hasConceptScore W2026486475C121332964 @default.
- W2026486475 hasConceptScore W2026486475C122280245 @default.
- W2026486475 hasConceptScore W2026486475C12267149 @default.
- W2026486475 hasConceptScore W2026486475C127162648 @default.
- W2026486475 hasConceptScore W2026486475C134306372 @default.
- W2026486475 hasConceptScore W2026486475C154945302 @default.
- W2026486475 hasConceptScore W2026486475C158622935 @default.
- W2026486475 hasConceptScore W2026486475C162324750 @default.