Matches in SemOpenAlex for { <https://semopenalex.org/work/W2026490641> ?p ?o ?g. }
- W2026490641 endingPage "174" @default.
- W2026490641 startingPage "160" @default.
- W2026490641 abstract "We present an approach that uses latent variable modeling and multiple imputation to correct rater bias when one group of raters tends to be more lenient in assigning a diagnosis than another. Our method assumes that there exists an unobserved moderate category of patient who is assigned a positive diagnosis by one type of rater and a negative diagnosis by the other type. We present a Bayesian random effects censored ordinal probit model that allows us to calibrate the diagnoses across rater types by identifying and multiply imputing ‘case’ or ‘non-case’ status for patients in the moderate category. A Markov chain Monte Carlo algorithm is presented to estimate the posterior distribution of the model parameters and generate multiple imputations. Our method enables the calibrated diagnosis variable to be used in subsequent analyses while also preserving uncertainty in true diagnosis. We apply our model to diagnoses of posttraumatic stress disorder (PTSD) from a depression study where nurse practitioners were twice as likely as clinical psychologists to diagnose PTSD despite the fact that participants were randomly assigned to either a nurse or a psychologist. Our model appears to balance PTSD rates across raters, provides a good fit to the data, and preserves between-rater variability. After calibrating the diagnoses of PTSD across rater types, we perform an analysis looking at the effects of comorbid PTSD on changes in depression scores over time. Results are compared with an analysis that uses the original diagnoses and show that calibrating the PTSD diagnoses can yield different inferences. Copyright © 2010 John Wiley & Sons, Ltd." @default.
- W2026490641 created "2016-06-24" @default.
- W2026490641 creator A5013552087 @default.
- W2026490641 creator A5030674909 @default.
- W2026490641 creator A5035304381 @default.
- W2026490641 creator A5052400786 @default.
- W2026490641 date "2010-11-05" @default.
- W2026490641 modified "2023-09-24" @default.
- W2026490641 title "Using latent variable modeling and multiple imputation to calibrate rater bias in diagnosis assessment" @default.
- W2026490641 cites W1536497620 @default.
- W2026490641 cites W163004949 @default.
- W2026490641 cites W1936046240 @default.
- W2026490641 cites W1975972867 @default.
- W2026490641 cites W1986189897 @default.
- W2026490641 cites W1992467284 @default.
- W2026490641 cites W1998331851 @default.
- W2026490641 cites W2003684724 @default.
- W2026490641 cites W2019445072 @default.
- W2026490641 cites W2035370265 @default.
- W2026490641 cites W2039456885 @default.
- W2026490641 cites W2048370658 @default.
- W2026490641 cites W2063946746 @default.
- W2026490641 cites W2092704786 @default.
- W2026490641 cites W2097523546 @default.
- W2026490641 cites W2102847425 @default.
- W2026490641 cites W2112250399 @default.
- W2026490641 cites W2113039194 @default.
- W2026490641 cites W2114608372 @default.
- W2026490641 cites W2118502261 @default.
- W2026490641 cites W2120401253 @default.
- W2026490641 cites W2128775770 @default.
- W2026490641 cites W2131517502 @default.
- W2026490641 cites W2133494987 @default.
- W2026490641 cites W2147810983 @default.
- W2026490641 cites W2157877920 @default.
- W2026490641 cites W2162841213 @default.
- W2026490641 cites W2170684975 @default.
- W2026490641 cites W2280613312 @default.
- W2026490641 cites W2480680997 @default.
- W2026490641 cites W4211101039 @default.
- W2026490641 cites W4249129794 @default.
- W2026490641 cites W4300187280 @default.
- W2026490641 doi "https://doi.org/10.1002/sim.4109" @default.
- W2026490641 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3058328" @default.
- W2026490641 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21204122" @default.
- W2026490641 hasPublicationYear "2010" @default.
- W2026490641 type Work @default.
- W2026490641 sameAs 2026490641 @default.
- W2026490641 citedByCount "2" @default.
- W2026490641 countsByYear W20264906412015 @default.
- W2026490641 countsByYear W20264906412017 @default.
- W2026490641 crossrefType "journal-article" @default.
- W2026490641 hasAuthorship W2026490641A5013552087 @default.
- W2026490641 hasAuthorship W2026490641A5030674909 @default.
- W2026490641 hasAuthorship W2026490641A5035304381 @default.
- W2026490641 hasAuthorship W2026490641A5052400786 @default.
- W2026490641 hasBestOaLocation W20264906412 @default.
- W2026490641 hasConcept C105795698 @default.
- W2026490641 hasConcept C107673813 @default.
- W2026490641 hasConcept C111350023 @default.
- W2026490641 hasConcept C142724271 @default.
- W2026490641 hasConcept C149782125 @default.
- W2026490641 hasConcept C15744967 @default.
- W2026490641 hasConcept C33923547 @default.
- W2026490641 hasConcept C51167844 @default.
- W2026490641 hasConcept C534262118 @default.
- W2026490641 hasConcept C70410870 @default.
- W2026490641 hasConcept C71924100 @default.
- W2026490641 hasConceptScore W2026490641C105795698 @default.
- W2026490641 hasConceptScore W2026490641C107673813 @default.
- W2026490641 hasConceptScore W2026490641C111350023 @default.
- W2026490641 hasConceptScore W2026490641C142724271 @default.
- W2026490641 hasConceptScore W2026490641C149782125 @default.
- W2026490641 hasConceptScore W2026490641C15744967 @default.
- W2026490641 hasConceptScore W2026490641C33923547 @default.
- W2026490641 hasConceptScore W2026490641C51167844 @default.
- W2026490641 hasConceptScore W2026490641C534262118 @default.
- W2026490641 hasConceptScore W2026490641C70410870 @default.
- W2026490641 hasConceptScore W2026490641C71924100 @default.
- W2026490641 hasIssue "2" @default.
- W2026490641 hasLocation W20264906411 @default.
- W2026490641 hasLocation W20264906412 @default.
- W2026490641 hasLocation W20264906413 @default.
- W2026490641 hasOpenAccess W2026490641 @default.
- W2026490641 hasPrimaryLocation W20264906411 @default.
- W2026490641 hasRelatedWork W1525004912 @default.
- W2026490641 hasRelatedWork W1998603211 @default.
- W2026490641 hasRelatedWork W2024085304 @default.
- W2026490641 hasRelatedWork W2027304686 @default.
- W2026490641 hasRelatedWork W2063846874 @default.
- W2026490641 hasRelatedWork W2073482910 @default.
- W2026490641 hasRelatedWork W2154486547 @default.
- W2026490641 hasRelatedWork W2418594686 @default.
- W2026490641 hasRelatedWork W2519103737 @default.
- W2026490641 hasRelatedWork W2551343228 @default.
- W2026490641 hasRelatedWork W2804967322 @default.
- W2026490641 hasRelatedWork W2888787503 @default.
- W2026490641 hasRelatedWork W2892151943 @default.