Matches in SemOpenAlex for { <https://semopenalex.org/work/W2026650951> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2026650951 endingPage "167" @default.
- W2026650951 startingPage "157" @default.
- W2026650951 abstract "In the generalised total least squares (GTLS) problem, observations can be perturbed by random errors that are dependently, inconsistently and normally distributed with a non-zero mean, and the coefficient matrix can hold any structure. In this contribution, a set of formulae for GTLS adjustment is derived using a pseudo-observation method. Based on the derived results, an iterative algorithm (algorithm 1) only for the estimation of parameters and a two-loop iterative algorithm (algorithm 2) for the estimation of parameters and variance factors are developed. Moreover, the derivative of a vector is introduced to deal with the structured TLS problem. A straight line fitting and a simulated 2D affine transformation experiment are performed to verify the applicability of the developed algorithms. The results show that algorithm1 can be used to simultaneously handle the structured coefficient matrix, correlated error and non-zero expectation problem, while algorithm 2 can be utilised to manage the variance component estimation problem with the non-zero expectation assumption. Under the identical statistical assumptions, the suggested algorithm can achieve the same results as the solutions of Schaffrin (2008) Schaffrin B and Wieser A. 2008. On weighted total least-squares adjustment for linear regression. Journal of Geodesy, 82(7), pp. 415–21. doi: 10.1007/s00190-007-0190-9[Crossref], [Web of Science ®] , [Google Scholar], Shen (2011) Shen YZ, Li BF and Chen Y. 2011. An iterative solution of weighted total least-squares adjustment. Journal of Geodesy, 85(4), pp. 229–38. doi: 10.1007/s00190-010-0431-1[Crossref], [Web of Science ®] , [Google Scholar], Fang (2013) Fang X. 2013. Weighted total least squares: necessary and sufficient conditions, fixed and random parameters. Journal of Geodesy, 87(8), pp. 733–49. doi: 10.1007/s00190-013-0643-2[Crossref], [Web of Science ®] , [Google Scholar] and Amiri-Simkooei (2013) Amiri-Simkooei AR. 2013. Application of least squares variance component estimation to errors-in-variables models. Journal of Geodesy, 87(10–12), pp. 935–44. doi: 10.1007/s00190-013-0658-8[Crossref], [Web of Science ®] , [Google Scholar]." @default.
- W2026650951 created "2016-06-24" @default.
- W2026650951 creator A5046145382 @default.
- W2026650951 creator A5047513228 @default.
- W2026650951 creator A5057419150 @default.
- W2026650951 date "2016-02-29" @default.
- W2026650951 modified "2023-09-23" @default.
- W2026650951 title "Generalised total least squares solution based on pseudo-observation method" @default.
- W2026650951 cites W178427915 @default.
- W2026650951 cites W1965270833 @default.
- W2026650951 cites W1971513400 @default.
- W2026650951 cites W1971585425 @default.
- W2026650951 cites W1976377934 @default.
- W2026650951 cites W1978968684 @default.
- W2026650951 cites W2008229822 @default.
- W2026650951 cites W2019443198 @default.
- W2026650951 cites W2025272748 @default.
- W2026650951 cites W2031519311 @default.
- W2026650951 cites W2032082196 @default.
- W2026650951 cites W2044669574 @default.
- W2026650951 cites W2055241826 @default.
- W2026650951 cites W2074985923 @default.
- W2026650951 cites W2082028360 @default.
- W2026650951 cites W2084423326 @default.
- W2026650951 cites W2084924291 @default.
- W2026650951 cites W2091992680 @default.
- W2026650951 cites W2097583558 @default.
- W2026650951 cites W2132288941 @default.
- W2026650951 cites W2145147112 @default.
- W2026650951 cites W2151501940 @default.
- W2026650951 cites W2294798173 @default.
- W2026650951 cites W4206428854 @default.
- W2026650951 doi "https://doi.org/10.1179/1752270614y.0000000155" @default.
- W2026650951 hasPublicationYear "2016" @default.
- W2026650951 type Work @default.
- W2026650951 sameAs 2026650951 @default.
- W2026650951 citedByCount "2" @default.
- W2026650951 countsByYear W20266509512016 @default.
- W2026650951 countsByYear W20266509512020 @default.
- W2026650951 crossrefType "journal-article" @default.
- W2026650951 hasAuthorship W2026650951A5046145382 @default.
- W2026650951 hasAuthorship W2026650951A5047513228 @default.
- W2026650951 hasAuthorship W2026650951A5057419150 @default.
- W2026650951 hasConcept C105795698 @default.
- W2026650951 hasConcept C11413529 @default.
- W2026650951 hasConcept C121955636 @default.
- W2026650951 hasConcept C144133560 @default.
- W2026650951 hasConcept C169241690 @default.
- W2026650951 hasConcept C185429906 @default.
- W2026650951 hasConcept C188649462 @default.
- W2026650951 hasConcept C196083921 @default.
- W2026650951 hasConcept C22789450 @default.
- W2026650951 hasConcept C2524010 @default.
- W2026650951 hasConcept C28826006 @default.
- W2026650951 hasConcept C33923547 @default.
- W2026650951 hasConcept C41008148 @default.
- W2026650951 hasConcept C58663186 @default.
- W2026650951 hasConcept C92757383 @default.
- W2026650951 hasConcept C9936470 @default.
- W2026650951 hasConceptScore W2026650951C105795698 @default.
- W2026650951 hasConceptScore W2026650951C11413529 @default.
- W2026650951 hasConceptScore W2026650951C121955636 @default.
- W2026650951 hasConceptScore W2026650951C144133560 @default.
- W2026650951 hasConceptScore W2026650951C169241690 @default.
- W2026650951 hasConceptScore W2026650951C185429906 @default.
- W2026650951 hasConceptScore W2026650951C188649462 @default.
- W2026650951 hasConceptScore W2026650951C196083921 @default.
- W2026650951 hasConceptScore W2026650951C22789450 @default.
- W2026650951 hasConceptScore W2026650951C2524010 @default.
- W2026650951 hasConceptScore W2026650951C28826006 @default.
- W2026650951 hasConceptScore W2026650951C33923547 @default.
- W2026650951 hasConceptScore W2026650951C41008148 @default.
- W2026650951 hasConceptScore W2026650951C58663186 @default.
- W2026650951 hasConceptScore W2026650951C92757383 @default.
- W2026650951 hasConceptScore W2026650951C9936470 @default.
- W2026650951 hasIssue "348" @default.
- W2026650951 hasLocation W20266509511 @default.
- W2026650951 hasOpenAccess W2026650951 @default.
- W2026650951 hasPrimaryLocation W20266509511 @default.
- W2026650951 hasRelatedWork W1997932650 @default.
- W2026650951 hasRelatedWork W2033840654 @default.
- W2026650951 hasRelatedWork W2034819163 @default.
- W2026650951 hasRelatedWork W2104545906 @default.
- W2026650951 hasRelatedWork W2145045474 @default.
- W2026650951 hasRelatedWork W2146954624 @default.
- W2026650951 hasRelatedWork W2364518468 @default.
- W2026650951 hasRelatedWork W2797020683 @default.
- W2026650951 hasRelatedWork W4380487384 @default.
- W2026650951 hasRelatedWork W79007405 @default.
- W2026650951 hasVolume "48" @default.
- W2026650951 isParatext "false" @default.
- W2026650951 isRetracted "false" @default.
- W2026650951 magId "2026650951" @default.
- W2026650951 workType "article" @default.