Matches in SemOpenAlex for { <https://semopenalex.org/work/W2026723939> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2026723939 endingPage "119" @default.
- W2026723939 startingPage "107" @default.
- W2026723939 abstract "Abstract While most existing studies have focused on extracting geometric information on buildings, only a few have concentrated on semantic information. The lack of semantic information cannot satisfy many demands on resolving environmental and social issues. This study presents an approach to semantically classify buildings into much finer categories than those of existing studies by learning random forest (RF) classifier from a large number of imbalanced samples with high-dimensional features. First, a two-level segmentation mechanism combining GIS and VHR image produces single image objects at a large scale and intra-object components at a small scale. Second, a semi-supervised method chooses a large number of unbiased samples by considering the spatial proximity and intra-cluster similarity of buildings. Third, two important improvements in RF classifier are made: a voting-distribution ranked rule for reducing the influences of imbalanced samples on classification accuracy and a feature importance measurement for evaluating each feature’s contribution to the recognition of each category. Fourth, the semantic classification of urban buildings is practically conducted in Beijing city, and the results demonstrate that the proposed approach is effective and accurate. The seven categories used in the study are finer than those in existing work and more helpful to studying many environmental and social problems." @default.
- W2026723939 created "2016-06-24" @default.
- W2026723939 creator A5000376902 @default.
- W2026723939 creator A5057539340 @default.
- W2026723939 creator A5067506784 @default.
- W2026723939 date "2015-07-01" @default.
- W2026723939 modified "2023-10-16" @default.
- W2026723939 title "Semantic classification of urban buildings combining VHR image and GIS data: An improved random forest approach" @default.
- W2026723939 cites W1573664582 @default.
- W2026723939 cites W1580948147 @default.
- W2026723939 cites W1966411833 @default.
- W2026723939 cites W1982872386 @default.
- W2026723939 cites W2003317133 @default.
- W2026723939 cites W2010599066 @default.
- W2026723939 cites W2012838735 @default.
- W2026723939 cites W2023693832 @default.
- W2026723939 cites W2046953251 @default.
- W2026723939 cites W2054091530 @default.
- W2026723939 cites W2057175746 @default.
- W2026723939 cites W2061421991 @default.
- W2026723939 cites W2067654461 @default.
- W2026723939 cites W2070512596 @default.
- W2026723939 cites W2092041043 @default.
- W2026723939 cites W2095028777 @default.
- W2026723939 cites W2095364258 @default.
- W2026723939 cites W2112684576 @default.
- W2026723939 cites W2117186870 @default.
- W2026723939 cites W2117897510 @default.
- W2026723939 cites W2119879130 @default.
- W2026723939 cites W2124005542 @default.
- W2026723939 cites W2137446479 @default.
- W2026723939 cites W2137825465 @default.
- W2026723939 cites W2139086914 @default.
- W2026723939 cites W2155632266 @default.
- W2026723939 cites W2155910279 @default.
- W2026723939 cites W2157163776 @default.
- W2026723939 cites W2157284958 @default.
- W2026723939 cites W2158550732 @default.
- W2026723939 cites W2164976328 @default.
- W2026723939 cites W4236137412 @default.
- W2026723939 doi "https://doi.org/10.1016/j.isprsjprs.2015.03.011" @default.
- W2026723939 hasPublicationYear "2015" @default.
- W2026723939 type Work @default.
- W2026723939 sameAs 2026723939 @default.
- W2026723939 citedByCount "104" @default.
- W2026723939 countsByYear W20267239392015 @default.
- W2026723939 countsByYear W20267239392016 @default.
- W2026723939 countsByYear W20267239392017 @default.
- W2026723939 countsByYear W20267239392018 @default.
- W2026723939 countsByYear W20267239392019 @default.
- W2026723939 countsByYear W20267239392020 @default.
- W2026723939 countsByYear W20267239392021 @default.
- W2026723939 countsByYear W20267239392022 @default.
- W2026723939 countsByYear W20267239392023 @default.
- W2026723939 crossrefType "journal-article" @default.
- W2026723939 hasAuthorship W2026723939A5000376902 @default.
- W2026723939 hasAuthorship W2026723939A5057539340 @default.
- W2026723939 hasAuthorship W2026723939A5067506784 @default.
- W2026723939 hasConcept C154945302 @default.
- W2026723939 hasConcept C169258074 @default.
- W2026723939 hasConcept C205649164 @default.
- W2026723939 hasConcept C41008148 @default.
- W2026723939 hasConcept C41856607 @default.
- W2026723939 hasConcept C62649853 @default.
- W2026723939 hasConceptScore W2026723939C154945302 @default.
- W2026723939 hasConceptScore W2026723939C169258074 @default.
- W2026723939 hasConceptScore W2026723939C205649164 @default.
- W2026723939 hasConceptScore W2026723939C41008148 @default.
- W2026723939 hasConceptScore W2026723939C41856607 @default.
- W2026723939 hasConceptScore W2026723939C62649853 @default.
- W2026723939 hasFunder F4320321001 @default.
- W2026723939 hasLocation W20267239391 @default.
- W2026723939 hasOpenAccess W2026723939 @default.
- W2026723939 hasPrimaryLocation W20267239391 @default.
- W2026723939 hasRelatedWork W2240965754 @default.
- W2026723939 hasRelatedWork W2275058042 @default.
- W2026723939 hasRelatedWork W2748952813 @default.
- W2026723939 hasRelatedWork W2790695452 @default.
- W2026723939 hasRelatedWork W2899084033 @default.
- W2026723939 hasRelatedWork W3107474891 @default.
- W2026723939 hasRelatedWork W3208985699 @default.
- W2026723939 hasRelatedWork W4281560664 @default.
- W2026723939 hasRelatedWork W4282839226 @default.
- W2026723939 hasRelatedWork W4320483443 @default.
- W2026723939 hasVolume "105" @default.
- W2026723939 isParatext "false" @default.
- W2026723939 isRetracted "false" @default.
- W2026723939 magId "2026723939" @default.
- W2026723939 workType "article" @default.