Matches in SemOpenAlex for { <https://semopenalex.org/work/W2026807788> ?p ?o ?g. }
- W2026807788 abstract "Characterizing the conformations of protein in the transition state ensemble (TSE) is important for studying protein folding. A promising approach pioneered by Vendruscolo et al. [Nature (London) 409, 641 (2001)] to study TSE is to generate conformations that satisfy all constraints imposed by the experimentally measured ϕ values that provide information about the native likeness of the transition states. Faísca et al. [J. Chem. Phys. 129, 095108 (2008)] generated conformations of TSE based on the criterion that, starting from a TS conformation, the probabilities of folding and unfolding are about equal through Markov Chain Monte Carlo (MCMC) simulations. In this study, we use the technique of constrained sequential Monte Carlo method [Lin et al., J. Chem. Phys. 129, 094101 (2008); Zhang et al. Proteins 66, 61 (2007)] to generate TSE conformations of acylphosphatase of 98 residues that satisfy the ϕ-value constraints, as well as the criterion that each conformation has a folding probability of 0.5 by Monte Carlo simulations. We adopt a two stage process and first generate 5000 contact maps satisfying the ϕ-value constraints. Each contact map is then used to generate 1000 properly weighted conformations. After clustering similar conformations, we obtain a set of properly weighted samples of 4185 candidate clusters. Representative conformation of each of these cluster is then selected and 50 runs of Markov chain Monte Carlo (MCMC) simulation are carried using a regrowth move set. We then select a subset of 1501 conformations that have equal probabilities to fold and to unfold as the set of TSE. These 1501 samples characterize well the distribution of transition state ensemble conformations of acylphosphatase. Compared with previous studies, our approach can access much wider conformational space and can objectively generate conformations that satisfy the ϕ-value constraints and the criterion of 0.5 folding probability without bias. In contrast to previous studies, our results show that transition state conformations are very diverse and are far from nativelike when measured in cartesian root-mean-square deviation (cRMSD): the average cRMSD between TSE conformations and the native structure is 9.4 Å for this short protein, instead of 6 Å reported in previous studies. In addition, we found that the average fraction of native contacts in the TSE is 0.37, with enrichment in native-like β-sheets and a shortage of long range contacts, suggesting such contacts form at a later stage of folding. We further calculate the first passage time of folding of TSE conformations through calculation of physical time associated with the regrowth moves in MCMC simulation through mapping such moves to a Markovian state model, whose transition time was obtained by Langevin dynamics simulations. Our results indicate that despite the large structural diversity of the TSE, they are characterized by similar folding time. Our approach is general and can be used to study TSE in other macromolecules." @default.
- W2026807788 created "2016-06-24" @default.
- W2026807788 creator A5024732735 @default.
- W2026807788 creator A5038902147 @default.
- W2026807788 creator A5039102214 @default.
- W2026807788 creator A5063514061 @default.
- W2026807788 creator A5091558783 @default.
- W2026807788 date "2011-02-17" @default.
- W2026807788 modified "2023-10-12" @default.
- W2026807788 title "Constrained proper sampling of conformations of transition state ensemble of protein folding" @default.
- W2026807788 cites W1526967281 @default.
- W2026807788 cites W1536428180 @default.
- W2026807788 cites W1970440715 @default.
- W2026807788 cites W1974105492 @default.
- W2026807788 cites W1975506890 @default.
- W2026807788 cites W1977041940 @default.
- W2026807788 cites W1977179882 @default.
- W2026807788 cites W1977428203 @default.
- W2026807788 cites W1978033776 @default.
- W2026807788 cites W1991921179 @default.
- W2026807788 cites W1993487990 @default.
- W2026807788 cites W1997121342 @default.
- W2026807788 cites W2014460723 @default.
- W2026807788 cites W2017291869 @default.
- W2026807788 cites W2029057661 @default.
- W2026807788 cites W2032178575 @default.
- W2026807788 cites W2041459336 @default.
- W2026807788 cites W2044744507 @default.
- W2026807788 cites W2049966629 @default.
- W2026807788 cites W2056254169 @default.
- W2026807788 cites W2056446854 @default.
- W2026807788 cites W2064547413 @default.
- W2026807788 cites W2066999850 @default.
- W2026807788 cites W2068218688 @default.
- W2026807788 cites W2078621233 @default.
- W2026807788 cites W2081866413 @default.
- W2026807788 cites W2082582661 @default.
- W2026807788 cites W2083174976 @default.
- W2026807788 cites W2092181851 @default.
- W2026807788 cites W2092356013 @default.
- W2026807788 cites W2098055675 @default.
- W2026807788 cites W2104704906 @default.
- W2026807788 cites W2116966829 @default.
- W2026807788 cites W2129020329 @default.
- W2026807788 cites W2131046967 @default.
- W2026807788 cites W2131529311 @default.
- W2026807788 cites W2133166954 @default.
- W2026807788 cites W2140565568 @default.
- W2026807788 cites W2140721561 @default.
- W2026807788 cites W2141570358 @default.
- W2026807788 cites W2158163089 @default.
- W2026807788 cites W2161287236 @default.
- W2026807788 cites W2161859154 @default.
- W2026807788 doi "https://doi.org/10.1063/1.3519056" @default.
- W2026807788 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3071304" @default.
- W2026807788 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21341875" @default.
- W2026807788 hasPublicationYear "2011" @default.
- W2026807788 type Work @default.
- W2026807788 sameAs 2026807788 @default.
- W2026807788 citedByCount "13" @default.
- W2026807788 countsByYear W20268077882012 @default.
- W2026807788 countsByYear W20268077882013 @default.
- W2026807788 countsByYear W20268077882014 @default.
- W2026807788 countsByYear W20268077882015 @default.
- W2026807788 countsByYear W20268077882016 @default.
- W2026807788 crossrefType "journal-article" @default.
- W2026807788 hasAuthorship W2026807788A5024732735 @default.
- W2026807788 hasAuthorship W2026807788A5038902147 @default.
- W2026807788 hasAuthorship W2026807788A5039102214 @default.
- W2026807788 hasAuthorship W2026807788A5063514061 @default.
- W2026807788 hasAuthorship W2026807788A5091558783 @default.
- W2026807788 hasBestOaLocation W20268077882 @default.
- W2026807788 hasConcept C105795698 @default.
- W2026807788 hasConcept C111350023 @default.
- W2026807788 hasConcept C11413529 @default.
- W2026807788 hasConcept C119599485 @default.
- W2026807788 hasConcept C119857082 @default.
- W2026807788 hasConcept C121332964 @default.
- W2026807788 hasConcept C121864883 @default.
- W2026807788 hasConcept C127413603 @default.
- W2026807788 hasConcept C13153151 @default.
- W2026807788 hasConcept C147597530 @default.
- W2026807788 hasConcept C154945302 @default.
- W2026807788 hasConcept C164866538 @default.
- W2026807788 hasConcept C177264268 @default.
- W2026807788 hasConcept C185592680 @default.
- W2026807788 hasConcept C187653413 @default.
- W2026807788 hasConcept C19472624 @default.
- W2026807788 hasConcept C19499675 @default.
- W2026807788 hasConcept C199360897 @default.
- W2026807788 hasConcept C204328495 @default.
- W2026807788 hasConcept C2776545253 @default.
- W2026807788 hasConcept C2777936996 @default.
- W2026807788 hasConcept C33923547 @default.
- W2026807788 hasConcept C41008148 @default.
- W2026807788 hasConcept C48103436 @default.
- W2026807788 hasConcept C55493867 @default.
- W2026807788 hasConcept C59593255 @default.
- W2026807788 hasConcept C73555534 @default.
- W2026807788 hasConcept C8010536 @default.