Matches in SemOpenAlex for { <https://semopenalex.org/work/W2026851962> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2026851962 endingPage "186" @default.
- W2026851962 startingPage "179" @default.
- W2026851962 abstract "System Dynamics ReviewVolume 8, Issue 2 p. 179-186 Article Hopf bifurcation analysis applied to predator-prey modeling Peter Gross, Peter Gross Peter Gross, Mathematical Institute, Technical University of Denmark, DK-2800 Lyngby, DenmarkSearch for more papers by this authorJeppe Sturis, Jeppe Sturis Peter Gross, Mathematical Institute, Technical University of Denmark, DK-2800 Lyngby, DenmarkSearch for more papers by this author Peter Gross, Peter Gross Peter Gross, Mathematical Institute, Technical University of Denmark, DK-2800 Lyngby, DenmarkSearch for more papers by this authorJeppe Sturis, Jeppe Sturis Peter Gross, Mathematical Institute, Technical University of Denmark, DK-2800 Lyngby, DenmarkSearch for more papers by this author First published: Summer 1992 https://doi.org/10.1002/sdr.4260080206Citations: 2AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References Beltrami, E. 1987. Mathematics for Dynamic Modeling. San Diego: Academic Press. Brøns, M., and J. Sturis. 1991. Local and Global Bifurcations in a Model of the Economic Long Wave. System Dynamics Review 7 (1): 41–60. Chow, S.-N., and J. K. Hale. 1982. Methods of Bifurcation Theory. Grundlehren der Mathematischen Wissenschaften 251. New York: Springer-Verlag. Golubitsky, M., and W. F. Langford. 1981. Classification and Unfoldings of Degenerate Hopf Bifurcations. Journal of Differential Equations 41: 375–415. Guckenheimer, J., and P. Holmes. 1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields. Applied Mathematics and Science 42. New York: Springer-Verlag. Göbher, F., and K.-D. Willamowski. 1979. Lyapunov Approach to Multiple Hopf Bifurcations. Journal of Mathematical Analysis and Applications 71: 333–350. Swart, J. 1990. A System Dynamics Approach to Predator-Prey Modeling. System Dynamics Review 6 (1): 94–99. Thompson, J. M. T. 1982. Instabilities and Catastrophes in Science and Engineering. New York: Wiley. Citing Literature Volume8, Issue2Summer 1992Pages 179-186 ReferencesRelatedInformation" @default.
- W2026851962 created "2016-06-24" @default.
- W2026851962 creator A5041165497 @default.
- W2026851962 creator A5055634565 @default.
- W2026851962 date "1992-01-01" @default.
- W2026851962 modified "2023-10-14" @default.
- W2026851962 title "Hopf bifurcation analysis applied to predator-prey modeling" @default.
- W2026851962 cites W1603340857 @default.
- W2026851962 cites W1993902934 @default.
- W2026851962 cites W2074879692 @default.
- W2026851962 cites W2089876099 @default.
- W2026851962 cites W2094395833 @default.
- W2026851962 cites W2111166775 @default.
- W2026851962 doi "https://doi.org/10.1002/sdr.4260080206" @default.
- W2026851962 hasPublicationYear "1992" @default.
- W2026851962 type Work @default.
- W2026851962 sameAs 2026851962 @default.
- W2026851962 citedByCount "2" @default.
- W2026851962 crossrefType "journal-article" @default.
- W2026851962 hasAuthorship W2026851962A5041165497 @default.
- W2026851962 hasAuthorship W2026851962A5055634565 @default.
- W2026851962 hasConcept C121332964 @default.
- W2026851962 hasConcept C144237770 @default.
- W2026851962 hasConcept C154945302 @default.
- W2026851962 hasConcept C158622935 @default.
- W2026851962 hasConcept C161191863 @default.
- W2026851962 hasConcept C172435161 @default.
- W2026851962 hasConcept C2778805511 @default.
- W2026851962 hasConcept C2781349735 @default.
- W2026851962 hasConcept C2986411436 @default.
- W2026851962 hasConcept C33923547 @default.
- W2026851962 hasConcept C41008148 @default.
- W2026851962 hasConcept C42475967 @default.
- W2026851962 hasConcept C62520636 @default.
- W2026851962 hasConceptScore W2026851962C121332964 @default.
- W2026851962 hasConceptScore W2026851962C144237770 @default.
- W2026851962 hasConceptScore W2026851962C154945302 @default.
- W2026851962 hasConceptScore W2026851962C158622935 @default.
- W2026851962 hasConceptScore W2026851962C161191863 @default.
- W2026851962 hasConceptScore W2026851962C172435161 @default.
- W2026851962 hasConceptScore W2026851962C2778805511 @default.
- W2026851962 hasConceptScore W2026851962C2781349735 @default.
- W2026851962 hasConceptScore W2026851962C2986411436 @default.
- W2026851962 hasConceptScore W2026851962C33923547 @default.
- W2026851962 hasConceptScore W2026851962C41008148 @default.
- W2026851962 hasConceptScore W2026851962C42475967 @default.
- W2026851962 hasConceptScore W2026851962C62520636 @default.
- W2026851962 hasIssue "2" @default.
- W2026851962 hasLocation W20268519621 @default.
- W2026851962 hasOpenAccess W2026851962 @default.
- W2026851962 hasPrimaryLocation W20268519621 @default.
- W2026851962 hasRelatedWork W2011669067 @default.
- W2026851962 hasRelatedWork W2083558993 @default.
- W2026851962 hasRelatedWork W2126189245 @default.
- W2026851962 hasRelatedWork W2317062345 @default.
- W2026851962 hasRelatedWork W3198614086 @default.
- W2026851962 hasRelatedWork W4205586579 @default.
- W2026851962 hasRelatedWork W4232745934 @default.
- W2026851962 hasRelatedWork W4247818195 @default.
- W2026851962 hasRelatedWork W50337273 @default.
- W2026851962 hasRelatedWork W2611037281 @default.
- W2026851962 hasVolume "8" @default.
- W2026851962 isParatext "false" @default.
- W2026851962 isRetracted "false" @default.
- W2026851962 magId "2026851962" @default.
- W2026851962 workType "article" @default.