Matches in SemOpenAlex for { <https://semopenalex.org/work/W2026936164> ?p ?o ?g. }
- W2026936164 endingPage "N47" @default.
- W2026936164 startingPage "N47" @default.
- W2026936164 abstract "The vortical structures of near-wall turbulence at moderate Reynolds number are analyzed and compared in datasets obtained from stereoscopic particle image velocimetry (SPIV) in a turbulent boundary layer and from direct numerical simulations (DNS) in a turbulent channel flow. The SPIV data are acquired in the LTRAC water tunnel at Re τ=δ+=820 in a streamwise/wall-normal plane, and in the LML wind tunnel at Re τ=δ+=2590 in a streamwise/wall-normal plane and in a plane orthogonal to the mean flow. The DNS data is taken from DelAlamo et al. (Self-similar vortex clusters in the turbulent logarithmic region, J. Fluid Mech. 561 (2006), pp. 329–358), at Re τ=950. The SPIV database is validated through an analysis of its mean velocity profile and power spectra, which are compared with reference profiles. A common detection algorithm is then applied to both the SPIV and DNS datasets in order to retrieve the streamwise and spanwise vortices. The algorithm employed is based on the 2D swirling strength and on a fit of an Oseen vortex model, which allows to retrieve the vortex characteristics, including its radius, vorticity, and position of the center. At all Reynolds numbers, the near-wall region is found to be the most densely populated region, predominantly with streamwise vortices that are on average smaller and more intense than spanwise vortices. In contrast, the logarithmic region is equally constituted of streamwise and spanwise vortices having equivalent characteristics. Two different scalings were employed to analyze the vortex radius and vorticity: the wall unit scaling and the Kolmogorov scaling. In wall unit scaling, a good universality in Reynolds numbers of the vortices radius and vorticity is observed in the near-wall and logarithmic regions: the vorticity is found to be maximum at the wall, decreasing first rapidly and then increasing slowly with wall-normal distance; the radius is increasing slowly with wall-normal distance in both the regions, except for the streamwise vortices, for which a sharp increase in radius is observed in the near-wall region. However, wall units scaling is found to be deficient in the outer region, where Reynolds number effects are observed. The Kolmogorov scaling appears to be universal both in Reynolds number and wall-normal distance across the investigated three regions, with a mean radius of the order of 8η and a mean vorticity of the order of 1.5τ−1, but for the SPIV data only. In the DNS dataset, the radius in the Kolmogorov scaling slowly decreases with wall-normal distance. This difference between the SPIV and DNS datasets may be linked to a difference between the boundary layer flow and the channel flow, rather than to the techniques themselves. Finally, the distribution of the vorticity of the detected vortices seems to follow faithfully a log-normal distribution, in good agreement with Kolmogorov’s theory (A refinement of previous hypothesis concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, J. Fluid Mech. 13 (1962), pp. 82–85)." @default.
- W2026936164 created "2016-06-24" @default.
- W2026936164 creator A5013072851 @default.
- W2026936164 creator A5086295800 @default.
- W2026936164 creator A5087046617 @default.
- W2026936164 date "2010-01-01" @default.
- W2026936164 modified "2023-10-15" @default.
- W2026936164 title "The organization of near-wall turbulence: a comparison between boundary layer SPIV data and channel flow DNS data" @default.
- W2026936164 cites W1514502579 @default.
- W2026936164 cites W1967693646 @default.
- W2026936164 cites W1968895792 @default.
- W2026936164 cites W1976638764 @default.
- W2026936164 cites W1978609664 @default.
- W2026936164 cites W1979176272 @default.
- W2026936164 cites W1981691723 @default.
- W2026936164 cites W1981799239 @default.
- W2026936164 cites W1992580424 @default.
- W2026936164 cites W2003875758 @default.
- W2026936164 cites W2007312298 @default.
- W2026936164 cites W2012323802 @default.
- W2026936164 cites W2013454735 @default.
- W2026936164 cites W2016500715 @default.
- W2026936164 cites W2029729989 @default.
- W2026936164 cites W2034368317 @default.
- W2026936164 cites W2047813285 @default.
- W2026936164 cites W2049857566 @default.
- W2026936164 cites W2054569861 @default.
- W2026936164 cites W2061863349 @default.
- W2026936164 cites W2062443841 @default.
- W2026936164 cites W2086761362 @default.
- W2026936164 cites W2092959022 @default.
- W2026936164 cites W2099087206 @default.
- W2026936164 cites W2102901030 @default.
- W2026936164 cites W2132926613 @default.
- W2026936164 cites W2141208518 @default.
- W2026936164 cites W2147429299 @default.
- W2026936164 cites W2156242059 @default.
- W2026936164 cites W2157464891 @default.
- W2026936164 cites W2167763600 @default.
- W2026936164 cites W4231806005 @default.
- W2026936164 doi "https://doi.org/10.1080/14685248.2010.508460" @default.
- W2026936164 hasPublicationYear "2010" @default.
- W2026936164 type Work @default.
- W2026936164 sameAs 2026936164 @default.
- W2026936164 citedByCount "24" @default.
- W2026936164 countsByYear W20269361642012 @default.
- W2026936164 countsByYear W20269361642013 @default.
- W2026936164 countsByYear W20269361642014 @default.
- W2026936164 countsByYear W20269361642015 @default.
- W2026936164 countsByYear W20269361642017 @default.
- W2026936164 countsByYear W20269361642018 @default.
- W2026936164 countsByYear W20269361642019 @default.
- W2026936164 countsByYear W20269361642020 @default.
- W2026936164 countsByYear W20269361642021 @default.
- W2026936164 countsByYear W20269361642022 @default.
- W2026936164 countsByYear W20269361642023 @default.
- W2026936164 crossrefType "journal-article" @default.
- W2026936164 hasAuthorship W2026936164A5013072851 @default.
- W2026936164 hasAuthorship W2026936164A5086295800 @default.
- W2026936164 hasAuthorship W2026936164A5087046617 @default.
- W2026936164 hasConcept C111603439 @default.
- W2026936164 hasConcept C121332964 @default.
- W2026936164 hasConcept C140820882 @default.
- W2026936164 hasConcept C17825722 @default.
- W2026936164 hasConcept C178635117 @default.
- W2026936164 hasConcept C182748727 @default.
- W2026936164 hasConcept C18533594 @default.
- W2026936164 hasConcept C196558001 @default.
- W2026936164 hasConcept C200114574 @default.
- W2026936164 hasConcept C207857233 @default.
- W2026936164 hasConcept C2524010 @default.
- W2026936164 hasConcept C33923547 @default.
- W2026936164 hasConcept C38652104 @default.
- W2026936164 hasConcept C41008148 @default.
- W2026936164 hasConcept C57879066 @default.
- W2026936164 hasConceptScore W2026936164C111603439 @default.
- W2026936164 hasConceptScore W2026936164C121332964 @default.
- W2026936164 hasConceptScore W2026936164C140820882 @default.
- W2026936164 hasConceptScore W2026936164C17825722 @default.
- W2026936164 hasConceptScore W2026936164C178635117 @default.
- W2026936164 hasConceptScore W2026936164C182748727 @default.
- W2026936164 hasConceptScore W2026936164C18533594 @default.
- W2026936164 hasConceptScore W2026936164C196558001 @default.
- W2026936164 hasConceptScore W2026936164C200114574 @default.
- W2026936164 hasConceptScore W2026936164C207857233 @default.
- W2026936164 hasConceptScore W2026936164C2524010 @default.
- W2026936164 hasConceptScore W2026936164C33923547 @default.
- W2026936164 hasConceptScore W2026936164C38652104 @default.
- W2026936164 hasConceptScore W2026936164C41008148 @default.
- W2026936164 hasConceptScore W2026936164C57879066 @default.
- W2026936164 hasLocation W20269361641 @default.
- W2026936164 hasLocation W20269361642 @default.
- W2026936164 hasLocation W20269361643 @default.
- W2026936164 hasLocation W20269361644 @default.
- W2026936164 hasLocation W20269361645 @default.
- W2026936164 hasOpenAccess W2026936164 @default.
- W2026936164 hasPrimaryLocation W20269361641 @default.
- W2026936164 hasRelatedWork W2044068067 @default.