Matches in SemOpenAlex for { <https://semopenalex.org/work/W2027021064> ?p ?o ?g. }
- W2027021064 abstract "In this paper, we propose a generative tracking method based on a novel robust linear regression algorithm. In contrast to existing methods, the proposed Least Soft-thresold Squares (LSS) algorithm models the error term with the Gaussian-Laplacian distribution, which can be solved efficiently. Based on maximum joint likelihood of parameters, we derive a LSS distance to measure the difference between an observation sample and the dictionary. Compared with the distance derived from ordinary least squares methods, the proposed metric is more effective in dealing with outliers. In addition, we present an update scheme to capture the appearance change of the tracked target and ensure that the model is properly updated. Experimental results on several challenging image sequences demonstrate that the proposed tracker achieves more favorable performance than the state-of-the-art methods." @default.
- W2027021064 created "2016-06-24" @default.
- W2027021064 creator A5006986293 @default.
- W2027021064 creator A5046454314 @default.
- W2027021064 creator A5063179713 @default.
- W2027021064 date "2013-06-01" @default.
- W2027021064 modified "2023-09-30" @default.
- W2027021064 title "Least Soft-Threshold Squares Tracking" @default.
- W2027021064 cites W1981219153 @default.
- W2027021064 cites W2016075127 @default.
- W2027021064 cites W2016309246 @default.
- W2027021064 cites W2031489346 @default.
- W2027021064 cites W2066513304 @default.
- W2027021064 cites W2068861059 @default.
- W2027021064 cites W2076068008 @default.
- W2027021064 cites W2086383524 @default.
- W2027021064 cites W2086847993 @default.
- W2027021064 cites W2098854771 @default.
- W2027021064 cites W2098941887 @default.
- W2027021064 cites W2102674365 @default.
- W2027021064 cites W2112755387 @default.
- W2027021064 cites W2121193292 @default.
- W2027021064 cites W2124211486 @default.
- W2027021064 cites W2129812935 @default.
- W2027021064 cites W2130836991 @default.
- W2027021064 cites W2139047213 @default.
- W2027021064 cites W2170865122 @default.
- W2027021064 cites W2293873019 @default.
- W2027021064 cites W2753461371 @default.
- W2027021064 doi "https://doi.org/10.1109/cvpr.2013.307" @default.
- W2027021064 hasPublicationYear "2013" @default.
- W2027021064 type Work @default.
- W2027021064 sameAs 2027021064 @default.
- W2027021064 citedByCount "203" @default.
- W2027021064 countsByYear W20270210642013 @default.
- W2027021064 countsByYear W20270210642014 @default.
- W2027021064 countsByYear W20270210642015 @default.
- W2027021064 countsByYear W20270210642016 @default.
- W2027021064 countsByYear W20270210642017 @default.
- W2027021064 countsByYear W20270210642018 @default.
- W2027021064 countsByYear W20270210642019 @default.
- W2027021064 countsByYear W20270210642020 @default.
- W2027021064 countsByYear W20270210642021 @default.
- W2027021064 countsByYear W20270210642022 @default.
- W2027021064 crossrefType "proceedings-article" @default.
- W2027021064 hasAuthorship W2027021064A5006986293 @default.
- W2027021064 hasAuthorship W2027021064A5046454314 @default.
- W2027021064 hasAuthorship W2027021064A5063179713 @default.
- W2027021064 hasConcept C105795698 @default.
- W2027021064 hasConcept C11413529 @default.
- W2027021064 hasConcept C119857082 @default.
- W2027021064 hasConcept C121332964 @default.
- W2027021064 hasConcept C126090379 @default.
- W2027021064 hasConcept C153180895 @default.
- W2027021064 hasConcept C154945302 @default.
- W2027021064 hasConcept C15744967 @default.
- W2027021064 hasConcept C162324750 @default.
- W2027021064 hasConcept C163716315 @default.
- W2027021064 hasConcept C167928553 @default.
- W2027021064 hasConcept C176217482 @default.
- W2027021064 hasConcept C185429906 @default.
- W2027021064 hasConcept C19417346 @default.
- W2027021064 hasConcept C21547014 @default.
- W2027021064 hasConcept C2775936607 @default.
- W2027021064 hasConcept C2776502983 @default.
- W2027021064 hasConcept C33923547 @default.
- W2027021064 hasConcept C41008148 @default.
- W2027021064 hasConcept C45923927 @default.
- W2027021064 hasConcept C62520636 @default.
- W2027021064 hasConcept C70259352 @default.
- W2027021064 hasConcept C79337645 @default.
- W2027021064 hasConcept C9936470 @default.
- W2027021064 hasConcept C99656134 @default.
- W2027021064 hasConceptScore W2027021064C105795698 @default.
- W2027021064 hasConceptScore W2027021064C11413529 @default.
- W2027021064 hasConceptScore W2027021064C119857082 @default.
- W2027021064 hasConceptScore W2027021064C121332964 @default.
- W2027021064 hasConceptScore W2027021064C126090379 @default.
- W2027021064 hasConceptScore W2027021064C153180895 @default.
- W2027021064 hasConceptScore W2027021064C154945302 @default.
- W2027021064 hasConceptScore W2027021064C15744967 @default.
- W2027021064 hasConceptScore W2027021064C162324750 @default.
- W2027021064 hasConceptScore W2027021064C163716315 @default.
- W2027021064 hasConceptScore W2027021064C167928553 @default.
- W2027021064 hasConceptScore W2027021064C176217482 @default.
- W2027021064 hasConceptScore W2027021064C185429906 @default.
- W2027021064 hasConceptScore W2027021064C19417346 @default.
- W2027021064 hasConceptScore W2027021064C21547014 @default.
- W2027021064 hasConceptScore W2027021064C2775936607 @default.
- W2027021064 hasConceptScore W2027021064C2776502983 @default.
- W2027021064 hasConceptScore W2027021064C33923547 @default.
- W2027021064 hasConceptScore W2027021064C41008148 @default.
- W2027021064 hasConceptScore W2027021064C45923927 @default.
- W2027021064 hasConceptScore W2027021064C62520636 @default.
- W2027021064 hasConceptScore W2027021064C70259352 @default.
- W2027021064 hasConceptScore W2027021064C79337645 @default.
- W2027021064 hasConceptScore W2027021064C9936470 @default.
- W2027021064 hasConceptScore W2027021064C99656134 @default.
- W2027021064 hasLocation W20270210641 @default.
- W2027021064 hasOpenAccess W2027021064 @default.