Matches in SemOpenAlex for { <https://semopenalex.org/work/W2027243380> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2027243380 abstract "Neural networks with a single hidden layer are known to be universal function approximators. However, due to the complexity of the network topology and the nonlinear transfer function used in computing the hidden unit activations, the predictions of a trained network are difficult to comprehend. On the other hand, predictions from a multiple linear regression equation are easy to understand but are not accurate when the underlying relationship between the input variables and the output variable is nonlinear. We have thus developed a method for multivariate function approximation which combines neural network learning, clustering and multiple regression. This method generates a set of multiple linear regression equations using neural networks, where the number of regression equations is determined by clustering the weighted input variables. The predictions for samples of the same cluster are computed by the same regression equation. Experimental results on a number of real-world data demonstrate that this new method generates relatively few regression equations from the training data samples. Yet, drawing from the universal function approximation capacity of neural networks, the predictive accuracy is high. The prediction errors are comparable to or lower than those achieved by existing function approximation methods." @default.
- W2027243380 created "2016-06-24" @default.
- W2027243380 creator A5065131156 @default.
- W2027243380 creator A5067016419 @default.
- W2027243380 date "2002-06-01" @default.
- W2027243380 modified "2023-09-23" @default.
- W2027243380 title "GENERATING CONCISE SETS OF LINEAR REGRESSION RULES FROM ARTIFICIAL NEURAL NETWORKS" @default.
- W2027243380 cites W1988115241 @default.
- W2027243380 cites W2099791377 @default.
- W2027243380 cites W2105040691 @default.
- W2027243380 cites W2111719156 @default.
- W2027243380 doi "https://doi.org/10.1142/s0218213002000848" @default.
- W2027243380 hasPublicationYear "2002" @default.
- W2027243380 type Work @default.
- W2027243380 sameAs 2027243380 @default.
- W2027243380 citedByCount "5" @default.
- W2027243380 countsByYear W20272433802012 @default.
- W2027243380 crossrefType "journal-article" @default.
- W2027243380 hasAuthorship W2027243380A5065131156 @default.
- W2027243380 hasAuthorship W2027243380A5067016419 @default.
- W2027243380 hasConcept C105795698 @default.
- W2027243380 hasConcept C11413529 @default.
- W2027243380 hasConcept C119857082 @default.
- W2027243380 hasConcept C121332964 @default.
- W2027243380 hasConcept C14036430 @default.
- W2027243380 hasConcept C152877465 @default.
- W2027243380 hasConcept C154945302 @default.
- W2027243380 hasConcept C158622935 @default.
- W2027243380 hasConcept C33923547 @default.
- W2027243380 hasConcept C38365724 @default.
- W2027243380 hasConcept C41008148 @default.
- W2027243380 hasConcept C47702885 @default.
- W2027243380 hasConcept C48921125 @default.
- W2027243380 hasConcept C50644808 @default.
- W2027243380 hasConcept C62520636 @default.
- W2027243380 hasConcept C64946054 @default.
- W2027243380 hasConcept C73555534 @default.
- W2027243380 hasConcept C78458016 @default.
- W2027243380 hasConcept C83546350 @default.
- W2027243380 hasConcept C86803240 @default.
- W2027243380 hasConcept C91873725 @default.
- W2027243380 hasConceptScore W2027243380C105795698 @default.
- W2027243380 hasConceptScore W2027243380C11413529 @default.
- W2027243380 hasConceptScore W2027243380C119857082 @default.
- W2027243380 hasConceptScore W2027243380C121332964 @default.
- W2027243380 hasConceptScore W2027243380C14036430 @default.
- W2027243380 hasConceptScore W2027243380C152877465 @default.
- W2027243380 hasConceptScore W2027243380C154945302 @default.
- W2027243380 hasConceptScore W2027243380C158622935 @default.
- W2027243380 hasConceptScore W2027243380C33923547 @default.
- W2027243380 hasConceptScore W2027243380C38365724 @default.
- W2027243380 hasConceptScore W2027243380C41008148 @default.
- W2027243380 hasConceptScore W2027243380C47702885 @default.
- W2027243380 hasConceptScore W2027243380C48921125 @default.
- W2027243380 hasConceptScore W2027243380C50644808 @default.
- W2027243380 hasConceptScore W2027243380C62520636 @default.
- W2027243380 hasConceptScore W2027243380C64946054 @default.
- W2027243380 hasConceptScore W2027243380C73555534 @default.
- W2027243380 hasConceptScore W2027243380C78458016 @default.
- W2027243380 hasConceptScore W2027243380C83546350 @default.
- W2027243380 hasConceptScore W2027243380C86803240 @default.
- W2027243380 hasConceptScore W2027243380C91873725 @default.
- W2027243380 hasLocation W20272433801 @default.
- W2027243380 hasOpenAccess W2027243380 @default.
- W2027243380 hasPrimaryLocation W20272433801 @default.
- W2027243380 hasRelatedWork W119149152 @default.
- W2027243380 hasRelatedWork W150873652 @default.
- W2027243380 hasRelatedWork W1546130344 @default.
- W2027243380 hasRelatedWork W1569365537 @default.
- W2027243380 hasRelatedWork W1980477994 @default.
- W2027243380 hasRelatedWork W2058015161 @default.
- W2027243380 hasRelatedWork W2475282529 @default.
- W2027243380 hasRelatedWork W2533585993 @default.
- W2027243380 hasRelatedWork W2796601240 @default.
- W2027243380 hasRelatedWork W2895741899 @default.
- W2027243380 hasRelatedWork W2913747117 @default.
- W2027243380 hasRelatedWork W2931905699 @default.
- W2027243380 hasRelatedWork W2953707075 @default.
- W2027243380 hasRelatedWork W3031510551 @default.
- W2027243380 hasRelatedWork W3043093418 @default.
- W2027243380 hasRelatedWork W3082103851 @default.
- W2027243380 hasRelatedWork W3103013643 @default.
- W2027243380 hasRelatedWork W3127046748 @default.
- W2027243380 hasRelatedWork W3197218733 @default.
- W2027243380 hasRelatedWork W3012270847 @default.
- W2027243380 isParatext "false" @default.
- W2027243380 isRetracted "false" @default.
- W2027243380 magId "2027243380" @default.
- W2027243380 workType "article" @default.