Matches in SemOpenAlex for { <https://semopenalex.org/work/W2027311193> ?p ?o ?g. }
- W2027311193 abstract "This paper presents a novel procedure involving waveatom transform and Circular Complex-valued Extreme Learning Machine (CC-ELM) for automatic characterization of mammographic microcalcifications into benign or malignant. Waveatom transform is used to transform the mammogram image into multi-frequency domain features. The best feature set is obtained by feature reduction through Principal Component Analysis. The reduced feature set is then used to perform classification through a CC-ELM classifier. CC-ELM is a fast learning fully complex-valued classifier to perform real-valued classification tasks efficiently. Mammographic images obtained from Digital Database for Screening Mammography have been used in the study. About 400 Region of Interests extracted from mammograms are used. The performance of the proposed method is about 96.19%, which is significantly higher than the existing methods." @default.
- W2027311193 created "2016-06-24" @default.
- W2027311193 creator A5019720185 @default.
- W2027311193 creator A5057039480 @default.
- W2027311193 creator A5071060483 @default.
- W2027311193 date "2014-04-01" @default.
- W2027311193 modified "2023-09-22" @default.
- W2027311193 title "A novel method for benign and malignant characterization of mammographic microcalcifications employing waveatom features and circular complex valued — Extreme Learning Machine" @default.
- W2027311193 cites W1978437915 @default.
- W2027311193 cites W1978524241 @default.
- W2027311193 cites W1981263152 @default.
- W2027311193 cites W1981791388 @default.
- W2027311193 cites W1984278627 @default.
- W2027311193 cites W2031296078 @default.
- W2027311193 cites W2036043111 @default.
- W2027311193 cites W2048446345 @default.
- W2027311193 cites W2050883594 @default.
- W2027311193 cites W2051137709 @default.
- W2027311193 cites W2064123169 @default.
- W2027311193 cites W2068039374 @default.
- W2027311193 cites W2070680736 @default.
- W2027311193 cites W2070857393 @default.
- W2027311193 cites W2080460674 @default.
- W2027311193 cites W2092946307 @default.
- W2027311193 cites W2100651400 @default.
- W2027311193 cites W2106787323 @default.
- W2027311193 cites W2108009806 @default.
- W2027311193 cites W2117830586 @default.
- W2027311193 cites W2122621634 @default.
- W2027311193 cites W2123696692 @default.
- W2027311193 cites W2130878814 @default.
- W2027311193 cites W2139428734 @default.
- W2027311193 cites W2141804730 @default.
- W2027311193 cites W2148694408 @default.
- W2027311193 cites W2156869838 @default.
- W2027311193 cites W2159378532 @default.
- W2027311193 cites W2161694749 @default.
- W2027311193 cites W2162547327 @default.
- W2027311193 cites W2163572752 @default.
- W2027311193 cites W2164177859 @default.
- W2027311193 cites W2167897071 @default.
- W2027311193 doi "https://doi.org/10.1109/issnip.2014.6827660" @default.
- W2027311193 hasPublicationYear "2014" @default.
- W2027311193 type Work @default.
- W2027311193 sameAs 2027311193 @default.
- W2027311193 citedByCount "6" @default.
- W2027311193 countsByYear W20273111932017 @default.
- W2027311193 countsByYear W20273111932018 @default.
- W2027311193 countsByYear W20273111932020 @default.
- W2027311193 countsByYear W20273111932022 @default.
- W2027311193 crossrefType "proceedings-article" @default.
- W2027311193 hasAuthorship W2027311193A5019720185 @default.
- W2027311193 hasAuthorship W2027311193A5057039480 @default.
- W2027311193 hasAuthorship W2027311193A5071060483 @default.
- W2027311193 hasConcept C121608353 @default.
- W2027311193 hasConcept C126322002 @default.
- W2027311193 hasConcept C138885662 @default.
- W2027311193 hasConcept C153180895 @default.
- W2027311193 hasConcept C154945302 @default.
- W2027311193 hasConcept C27438332 @default.
- W2027311193 hasConcept C2776401178 @default.
- W2027311193 hasConcept C2779549770 @default.
- W2027311193 hasConcept C2780150128 @default.
- W2027311193 hasConcept C2780472235 @default.
- W2027311193 hasConcept C31972630 @default.
- W2027311193 hasConcept C41008148 @default.
- W2027311193 hasConcept C41895202 @default.
- W2027311193 hasConcept C50644808 @default.
- W2027311193 hasConcept C52622490 @default.
- W2027311193 hasConcept C530470458 @default.
- W2027311193 hasConcept C71924100 @default.
- W2027311193 hasConcept C95623464 @default.
- W2027311193 hasConceptScore W2027311193C121608353 @default.
- W2027311193 hasConceptScore W2027311193C126322002 @default.
- W2027311193 hasConceptScore W2027311193C138885662 @default.
- W2027311193 hasConceptScore W2027311193C153180895 @default.
- W2027311193 hasConceptScore W2027311193C154945302 @default.
- W2027311193 hasConceptScore W2027311193C27438332 @default.
- W2027311193 hasConceptScore W2027311193C2776401178 @default.
- W2027311193 hasConceptScore W2027311193C2779549770 @default.
- W2027311193 hasConceptScore W2027311193C2780150128 @default.
- W2027311193 hasConceptScore W2027311193C2780472235 @default.
- W2027311193 hasConceptScore W2027311193C31972630 @default.
- W2027311193 hasConceptScore W2027311193C41008148 @default.
- W2027311193 hasConceptScore W2027311193C41895202 @default.
- W2027311193 hasConceptScore W2027311193C50644808 @default.
- W2027311193 hasConceptScore W2027311193C52622490 @default.
- W2027311193 hasConceptScore W2027311193C530470458 @default.
- W2027311193 hasConceptScore W2027311193C71924100 @default.
- W2027311193 hasConceptScore W2027311193C95623464 @default.
- W2027311193 hasLocation W20273111931 @default.
- W2027311193 hasOpenAccess W2027311193 @default.
- W2027311193 hasPrimaryLocation W20273111931 @default.
- W2027311193 hasRelatedWork W1491251052 @default.
- W2027311193 hasRelatedWork W1913110963 @default.
- W2027311193 hasRelatedWork W1981263152 @default.
- W2027311193 hasRelatedWork W2001637772 @default.
- W2027311193 hasRelatedWork W2001915000 @default.
- W2027311193 hasRelatedWork W2001954668 @default.
- W2027311193 hasRelatedWork W2025471456 @default.