Matches in SemOpenAlex for { <https://semopenalex.org/work/W2027338854> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2027338854 endingPage "1155" @default.
- W2027338854 startingPage "1139" @default.
- W2027338854 abstract "In this article, we use the concept of artificial neural network and goal oriented design to propose a computer design tool that can help the designer to evaluate any aspect of earth-to-air heat exchanger and behavior of the final configuration. The present study focuses mostly on those aspects related to the passive heating or cooling performance of the building. Two models have been developed for this purpose, namely deterministic and intelligent. The deterministic model is developed by analyzing simultaneously coupled heat and mass transfer in ground whereas the intelligent model is a development of data driven artificial neural network model. Six variables influencing the thermal performance of the earth-to-air heat exchangers which were taken into account are length, humidity, ambient air temperature, ground surface temperature, ground temperature at burial depth and air mass flow rate. Furthermore, a sensitivity analysis was carried out in order to evaluate the impact of various factors involved in the energy balance equation at the burial depth. The model was validated against experimental data sets. Moreover, the developed algorithm is suitable for the calculation of the outlet air temperature and therefore of the heating and cooling potential of the earth-to-air heat exchanger system. The Intelligent model predicts earth-to-air heat exchanger outlet air temperature with an accuracy of ±2.6%, whereas, the deterministic model shows an accuracy of ±5.3%." @default.
- W2027338854 created "2016-06-24" @default.
- W2027338854 creator A5072439294 @default.
- W2027338854 creator A5078530750 @default.
- W2027338854 creator A5083108503 @default.
- W2027338854 date "2006-07-01" @default.
- W2027338854 modified "2023-09-25" @default.
- W2027338854 title "Heating and cooling potential of an earth-to-air heat exchanger using artificial neural network" @default.
- W2027338854 cites W1971199360 @default.
- W2027338854 cites W1978089976 @default.
- W2027338854 cites W1988115241 @default.
- W2027338854 cites W1996035452 @default.
- W2027338854 cites W2003484908 @default.
- W2027338854 cites W2006596048 @default.
- W2027338854 cites W2006815960 @default.
- W2027338854 cites W2008898550 @default.
- W2027338854 cites W2015303852 @default.
- W2027338854 cites W2017066287 @default.
- W2027338854 cites W2025552617 @default.
- W2027338854 cites W2045968773 @default.
- W2027338854 cites W2062425311 @default.
- W2027338854 cites W2076930675 @default.
- W2027338854 cites W2090132571 @default.
- W2027338854 cites W2149921893 @default.
- W2027338854 doi "https://doi.org/10.1016/j.renene.2005.06.007" @default.
- W2027338854 hasPublicationYear "2006" @default.
- W2027338854 type Work @default.
- W2027338854 sameAs 2027338854 @default.
- W2027338854 citedByCount "71" @default.
- W2027338854 countsByYear W20273388542012 @default.
- W2027338854 countsByYear W20273388542013 @default.
- W2027338854 countsByYear W20273388542014 @default.
- W2027338854 countsByYear W20273388542015 @default.
- W2027338854 countsByYear W20273388542017 @default.
- W2027338854 countsByYear W20273388542018 @default.
- W2027338854 countsByYear W20273388542019 @default.
- W2027338854 countsByYear W20273388542020 @default.
- W2027338854 countsByYear W20273388542021 @default.
- W2027338854 countsByYear W20273388542022 @default.
- W2027338854 countsByYear W20273388542023 @default.
- W2027338854 crossrefType "journal-article" @default.
- W2027338854 hasAuthorship W2027338854A5072439294 @default.
- W2027338854 hasAuthorship W2027338854A5078530750 @default.
- W2027338854 hasAuthorship W2027338854A5083108503 @default.
- W2027338854 hasConcept C107706546 @default.
- W2027338854 hasConcept C121332964 @default.
- W2027338854 hasConcept C127413603 @default.
- W2027338854 hasConcept C153294291 @default.
- W2027338854 hasConcept C154945302 @default.
- W2027338854 hasConcept C26148502 @default.
- W2027338854 hasConcept C37914503 @default.
- W2027338854 hasConcept C39432304 @default.
- W2027338854 hasConcept C41008148 @default.
- W2027338854 hasConcept C50644808 @default.
- W2027338854 hasConcept C78519656 @default.
- W2027338854 hasConceptScore W2027338854C107706546 @default.
- W2027338854 hasConceptScore W2027338854C121332964 @default.
- W2027338854 hasConceptScore W2027338854C127413603 @default.
- W2027338854 hasConceptScore W2027338854C153294291 @default.
- W2027338854 hasConceptScore W2027338854C154945302 @default.
- W2027338854 hasConceptScore W2027338854C26148502 @default.
- W2027338854 hasConceptScore W2027338854C37914503 @default.
- W2027338854 hasConceptScore W2027338854C39432304 @default.
- W2027338854 hasConceptScore W2027338854C41008148 @default.
- W2027338854 hasConceptScore W2027338854C50644808 @default.
- W2027338854 hasConceptScore W2027338854C78519656 @default.
- W2027338854 hasIssue "8" @default.
- W2027338854 hasLocation W20273388541 @default.
- W2027338854 hasOpenAccess W2027338854 @default.
- W2027338854 hasPrimaryLocation W20273388541 @default.
- W2027338854 hasRelatedWork W1569164921 @default.
- W2027338854 hasRelatedWork W1974972680 @default.
- W2027338854 hasRelatedWork W2173304361 @default.
- W2027338854 hasRelatedWork W2360003197 @default.
- W2027338854 hasRelatedWork W2375545754 @default.
- W2027338854 hasRelatedWork W2981383307 @default.
- W2027338854 hasRelatedWork W3110040737 @default.
- W2027338854 hasRelatedWork W3162875150 @default.
- W2027338854 hasRelatedWork W3180748239 @default.
- W2027338854 hasRelatedWork W4210381023 @default.
- W2027338854 hasVolume "31" @default.
- W2027338854 isParatext "false" @default.
- W2027338854 isRetracted "false" @default.
- W2027338854 magId "2027338854" @default.
- W2027338854 workType "article" @default.