Matches in SemOpenAlex for { <https://semopenalex.org/work/W2027453705> ?p ?o ?g. }
- W2027453705 abstract "Abstract The volume of satellite data amassed by modern day weather and climate satellites is so enormous that it has become virtually impossible for researchers to access the original resolution data collected by the satellites. Typically, researchers are forced to deal with lower resolution reduced data (e.g. cloud cover or temperatures) and often at a resolution degraded by one to three orders of magnitude when compared with the resolution of the original data. The uncertainties in the reduced data are often unknown. This state of affairs will only get worse, since the data to be collected under the guidance of NASA’s global change program may increase by several orders of magnitude in the coming decades. We need to experiment with mathematically rigorous ways to tame the original data without significantly degrading the information content. Compression of original data by objective mathematical techniques is a promising approach. This study adopts recent compression techniques developed in the field of communications and applies them to weather satellite data. Typically, these techniques compress the raw data by factors ranging from 10 to 100. The compressed data can be decompressed to retrieve the near original data at the site of the user. The mean error in the compression–decompression process varies from a few percent to several percent. As a demonstration, we consider the advanced very high resolution radiometer (AVHRR) radiances with a nadir resolution of 1 km ×1 km. For this demonstration, we adopt a well understood compression technique which is the so-called vector quantization technique. Several vector quantization techniques (full-search, tree-search, pruned-balanced-tree, greedy-tree and pruned-greedy-tree) are compared in performance and ease of implementation. The discussion focuses on the pruned greedy tree-structured vector quantizer because it is highly suited to the compression of AVHRR satellite images. For the case considered here, visual and scientific reproducibility of the original high resolution images are very good. The rms error for roughly 95% of the pixels in a scene is within 2%, even at a 32 : 1 compression ratio. The error in spatially averaged fields is less than 0.1% for averaging scales in excess of 50 km ×50 km. Some important spatial structural information is lost, however. It is found that the same image when compressed using JPEG standard shows significant loss of numerical accuracy at the same compression ratio of 32 : 1. But improvements and developments in compression techniques can minimize these errors and afford researchers the luxury of storing and working with high resolution data at roughly at about 0.03 of the space required by the original data." @default.
- W2027453705 created "2016-06-24" @default.
- W2027453705 creator A5016319152 @default.
- W2027453705 creator A5030119267 @default.
- W2027453705 creator A5036139688 @default.
- W2027453705 creator A5086422272 @default.
- W2027453705 date "1999-01-01" @default.
- W2027453705 modified "2023-10-02" @default.
- W2027453705 title "A strategy for satellite data archival. Low noise variable-rate vector quantization with application to AVHRR satellite images: A tutorial review" @default.
- W2027453705 cites W1634005169 @default.
- W2027453705 cites W1657016249 @default.
- W2027453705 cites W1776627580 @default.
- W2027453705 cites W1940433659 @default.
- W2027453705 cites W1983950053 @default.
- W2027453705 cites W2002142260 @default.
- W2027453705 cites W2002182716 @default.
- W2027453705 cites W2100115174 @default.
- W2027453705 cites W2116556665 @default.
- W2027453705 cites W2116911065 @default.
- W2027453705 cites W2128511113 @default.
- W2027453705 cites W2130305844 @default.
- W2027453705 cites W2134383396 @default.
- W2027453705 cites W2150593711 @default.
- W2027453705 cites W2152037928 @default.
- W2027453705 cites W2154410785 @default.
- W2027453705 cites W2156419723 @default.
- W2027453705 cites W2165123375 @default.
- W2027453705 cites W2186435531 @default.
- W2027453705 cites W2189330674 @default.
- W2027453705 cites W2539613124 @default.
- W2027453705 cites W2752853835 @default.
- W2027453705 cites W2913399920 @default.
- W2027453705 cites W3085162807 @default.
- W2027453705 cites W34368940 @default.
- W2027453705 doi "https://doi.org/10.1016/s0923-5965(98)00012-5" @default.
- W2027453705 hasPublicationYear "1999" @default.
- W2027453705 type Work @default.
- W2027453705 sameAs 2027453705 @default.
- W2027453705 citedByCount "0" @default.
- W2027453705 crossrefType "journal-article" @default.
- W2027453705 hasAuthorship W2027453705A5016319152 @default.
- W2027453705 hasAuthorship W2027453705A5030119267 @default.
- W2027453705 hasAuthorship W2027453705A5036139688 @default.
- W2027453705 hasAuthorship W2027453705A5086422272 @default.
- W2027453705 hasConcept C111919701 @default.
- W2027453705 hasConcept C11413529 @default.
- W2027453705 hasConcept C124101348 @default.
- W2027453705 hasConcept C127413603 @default.
- W2027453705 hasConcept C132964779 @default.
- W2027453705 hasConcept C146978453 @default.
- W2027453705 hasConcept C19269812 @default.
- W2027453705 hasConcept C199360897 @default.
- W2027453705 hasConcept C199833920 @default.
- W2027453705 hasConcept C205649164 @default.
- W2027453705 hasConcept C206887242 @default.
- W2027453705 hasConcept C2777480484 @default.
- W2027453705 hasConcept C41008148 @default.
- W2027453705 hasConcept C62649853 @default.
- W2027453705 hasConcept C78548338 @default.
- W2027453705 hasConcept C79974875 @default.
- W2027453705 hasConceptScore W2027453705C111919701 @default.
- W2027453705 hasConceptScore W2027453705C11413529 @default.
- W2027453705 hasConceptScore W2027453705C124101348 @default.
- W2027453705 hasConceptScore W2027453705C127413603 @default.
- W2027453705 hasConceptScore W2027453705C132964779 @default.
- W2027453705 hasConceptScore W2027453705C146978453 @default.
- W2027453705 hasConceptScore W2027453705C19269812 @default.
- W2027453705 hasConceptScore W2027453705C199360897 @default.
- W2027453705 hasConceptScore W2027453705C199833920 @default.
- W2027453705 hasConceptScore W2027453705C205649164 @default.
- W2027453705 hasConceptScore W2027453705C206887242 @default.
- W2027453705 hasConceptScore W2027453705C2777480484 @default.
- W2027453705 hasConceptScore W2027453705C41008148 @default.
- W2027453705 hasConceptScore W2027453705C62649853 @default.
- W2027453705 hasConceptScore W2027453705C78548338 @default.
- W2027453705 hasConceptScore W2027453705C79974875 @default.
- W2027453705 hasLocation W20274537051 @default.
- W2027453705 hasOpenAccess W2027453705 @default.
- W2027453705 hasPrimaryLocation W20274537051 @default.
- W2027453705 hasRelatedWork W123869457 @default.
- W2027453705 hasRelatedWork W1486953575 @default.
- W2027453705 hasRelatedWork W1967130175 @default.
- W2027453705 hasRelatedWork W1970902633 @default.
- W2027453705 hasRelatedWork W1972480679 @default.
- W2027453705 hasRelatedWork W1986721537 @default.
- W2027453705 hasRelatedWork W203380983 @default.
- W2027453705 hasRelatedWork W2035579472 @default.
- W2027453705 hasRelatedWork W2059483302 @default.
- W2027453705 hasRelatedWork W2109877016 @default.
- W2027453705 hasRelatedWork W2117793010 @default.
- W2027453705 hasRelatedWork W2141091449 @default.
- W2027453705 hasRelatedWork W2415477069 @default.
- W2027453705 hasRelatedWork W2533113973 @default.
- W2027453705 hasRelatedWork W2579069664 @default.
- W2027453705 hasRelatedWork W2927120057 @default.
- W2027453705 hasRelatedWork W3105126378 @default.
- W2027453705 hasRelatedWork W3105773461 @default.
- W2027453705 hasRelatedWork W2083221798 @default.
- W2027453705 hasRelatedWork W2491174009 @default.
- W2027453705 isParatext "false" @default.