Matches in SemOpenAlex for { <https://semopenalex.org/work/W2027621661> ?p ?o ?g. }
- W2027621661 endingPage "125" @default.
- W2027621661 startingPage "110" @default.
- W2027621661 abstract "We closely examine the trace-element concentrations of fifteen microinclusion-bearing diamonds from Canada, Guinea and South Africa that trapped low-Mg carbonatitic, silicic and saline high-density fluids (HDFs). The microinclusions trapped only HDFs, with no mineral microinclusions or mixtures of HDF+mineral; thus, their LA-ICP-MS analyses solely represent the compositions of the trapped fluids. HDFs of different major-element compositions (silicic, carbonatitic and saline) are characterized by fractionated REE patterns and variable, mostly negative, anomalies in Sr, Ti, Zr, Hf and Y relative to REEs of similar compatibility, regardless of their host diamondʼs provenance. In the highly incompatible elements (Cs–Pr) two patterns are notable. “Ribbed” patterns are characterized by high levels of Ba, Th, U and LREEs and lower alkalis, Nb and Ta. “Planed” patterns are smoother and typically devoid of significant fractionation between elements of similar compatibility. Co-variation diagrams of (La, Ce)/(Nb, Rb) vs. (U, Th)/(Nb, Rb) and Rb/Nb vs. La/Nb ratios can be used to best distinguish between the two patterns. Similarities of canonical ratios, such as Nb/(Th, U, La) and K/U, between MORB and OIB samples and HDFs with “Planed” patterns suggest an asthenospheric source for these HDFs. For silicic compositions, this idea is strengthened by calculating the sources in equilibrium with such HDFs which range in composition between the DMM and more fertile parts of the convecting mantle. Isotopic analyses may pinpoint this connection. The trace-element patterns of MARID and PIC xenoliths show a mirror-image to the pattern of silicic, low-Mg carbonatitic and saline HDFs with “Ribbed” patterns. Assuming that the HDFs are the product of a 0.1% batch melting, we obtain a source that is similar to the MARID and PIC patterns. However, the decoupling between major- and trace-elements in the HDFs argues against melting or fractional crystallization as the main processes leading to the formation of the “Ribbed” patterns. Percolation of an asthenospheric silicic HDF with “Planed” pattern through previously metasomatized lithosphere that carries accessory phlogopite and Fe–Ti oxides, closely reproduce the “Ribbed” pattern of silicic and low-Mg carbonatitic HDFs at fluid/rock ratios ≈ 0.1%. The initial trace-element pattern of the lithosphere influences the more compatible elements of the HDF (Sr–Lu). However, in the Cs–Pr range, the presence of phlogopite and Ti–Fe oxides controls the evolution of the “Ribbed” pattern. Percolation explains the observed decoupling between major- and trace-elements in HDFs and the resemblance of trace-element patterns in HDFs from different cratons. It may also explain the limited variation of δ13C in fibrous diamonds (−6±2‰). The two patterns escape the circular “chicken and egg” reasoning that calls for an enriched source for the formation of highly fractionated melts: it suggests that diamond-forming fluids can come directly from the asthenosphere (with no need for a pre-metasomatized source) and that they can be further modified in the lithosphere." @default.
- W2027621661 created "2016-06-24" @default.
- W2027621661 creator A5003159127 @default.
- W2027621661 creator A5056410545 @default.
- W2027621661 creator A5079364492 @default.
- W2027621661 date "2013-08-01" @default.
- W2027621661 modified "2023-10-11" @default.
- W2027621661 title "Diamond-forming fluids in fibrous diamonds: The trace-element perspective" @default.
- W2027621661 cites W1534749586 @default.
- W2027621661 cites W1564196663 @default.
- W2027621661 cites W1969859799 @default.
- W2027621661 cites W1970440568 @default.
- W2027621661 cites W1971493152 @default.
- W2027621661 cites W1972597152 @default.
- W2027621661 cites W1972910995 @default.
- W2027621661 cites W1974767465 @default.
- W2027621661 cites W1974914253 @default.
- W2027621661 cites W1976264605 @default.
- W2027621661 cites W1988551198 @default.
- W2027621661 cites W1992886136 @default.
- W2027621661 cites W1993620603 @default.
- W2027621661 cites W1995508596 @default.
- W2027621661 cites W1997677279 @default.
- W2027621661 cites W1998264376 @default.
- W2027621661 cites W2000169692 @default.
- W2027621661 cites W2000852740 @default.
- W2027621661 cites W2002443197 @default.
- W2027621661 cites W2004358840 @default.
- W2027621661 cites W2006532542 @default.
- W2027621661 cites W2008297722 @default.
- W2027621661 cites W2009118244 @default.
- W2027621661 cites W2011135502 @default.
- W2027621661 cites W2011607179 @default.
- W2027621661 cites W2012928211 @default.
- W2027621661 cites W2014828526 @default.
- W2027621661 cites W2018164646 @default.
- W2027621661 cites W2033936418 @default.
- W2027621661 cites W2034518834 @default.
- W2027621661 cites W2036531000 @default.
- W2027621661 cites W2036540575 @default.
- W2027621661 cites W2037895754 @default.
- W2027621661 cites W2038543720 @default.
- W2027621661 cites W2039939064 @default.
- W2027621661 cites W2041145438 @default.
- W2027621661 cites W2043480566 @default.
- W2027621661 cites W2044625514 @default.
- W2027621661 cites W2045696333 @default.
- W2027621661 cites W2049919556 @default.
- W2027621661 cites W2052159407 @default.
- W2027621661 cites W2055106424 @default.
- W2027621661 cites W2055236043 @default.
- W2027621661 cites W2058205386 @default.
- W2027621661 cites W2059506020 @default.
- W2027621661 cites W2064980952 @default.
- W2027621661 cites W2070412101 @default.
- W2027621661 cites W2071107833 @default.
- W2027621661 cites W2074324100 @default.
- W2027621661 cites W2074650057 @default.
- W2027621661 cites W2076993140 @default.
- W2027621661 cites W2079091258 @default.
- W2027621661 cites W2080327968 @default.
- W2027621661 cites W2081221388 @default.
- W2027621661 cites W2083784240 @default.
- W2027621661 cites W2086070454 @default.
- W2027621661 cites W2086595032 @default.
- W2027621661 cites W2087075409 @default.
- W2027621661 cites W2090568969 @default.
- W2027621661 cites W2096956171 @default.
- W2027621661 cites W2099138418 @default.
- W2027621661 cites W2105942108 @default.
- W2027621661 cites W2113070569 @default.
- W2027621661 cites W2119438235 @default.
- W2027621661 cites W2133610516 @default.
- W2027621661 cites W2138093481 @default.
- W2027621661 cites W2138106109 @default.
- W2027621661 cites W2139696801 @default.
- W2027621661 cites W2149743365 @default.
- W2027621661 cites W2155752114 @default.
- W2027621661 cites W2165768246 @default.
- W2027621661 cites W2166558570 @default.
- W2027621661 cites W2324234430 @default.
- W2027621661 doi "https://doi.org/10.1016/j.epsl.2013.06.021" @default.
- W2027621661 hasPublicationYear "2013" @default.
- W2027621661 type Work @default.
- W2027621661 sameAs 2027621661 @default.
- W2027621661 citedByCount "47" @default.
- W2027621661 countsByYear W20276216612013 @default.
- W2027621661 countsByYear W20276216612014 @default.
- W2027621661 countsByYear W20276216612015 @default.
- W2027621661 countsByYear W20276216612016 @default.
- W2027621661 countsByYear W20276216612017 @default.
- W2027621661 countsByYear W20276216612018 @default.
- W2027621661 countsByYear W20276216612019 @default.
- W2027621661 countsByYear W20276216612020 @default.
- W2027621661 countsByYear W20276216612021 @default.
- W2027621661 countsByYear W20276216612022 @default.
- W2027621661 countsByYear W20276216612023 @default.
- W2027621661 crossrefType "journal-article" @default.