Matches in SemOpenAlex for { <https://semopenalex.org/work/W2027627296> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2027627296 abstract "More than 70 years after its first discovery, superfluidity is still challenging researchers to unveil its most subtle aspects [1]. Among its many odd properties, a superfluid is characterized by a zero viscosity, i.e., the ability to flow without apparent friction. Long after the pioneering observations of these effects in liquid helium in the 1930s and 1940s, the development of laser cooling techniques for atomic gases has offered experimentalists a new framework for investigating the fundamental concepts of superfluidity and its not-so-direct relation with Bose-Einstein condensation. Writing in Physical Review Letters, Nigel Cooper and Zoran Hadzibabic from Cambridge University, UK, now propose [2] a novel protocol to experimentally address superfluidity in gases of ultracold atoms independently from condensation. Application of this method to strongly correlated atomic Fermi gases with nontrivial pairing mechanisms [3] will hopefully contribute to our understanding of puzzling condensed matter phenomena such as high-temperature superconductivity. Soon after the first observations, Fritz London proposed that Bose-Einstein condensation—the phenomenon in which bosons below a transition temperature accumulate into a single one-particle quantum state—might be responsible for superfluidity of liquid helium. Several decades elapsed before London’s hypothesis got a direct experimental verification from the measurement of the momentum distribution by means of neutron scattering experiments [4]: even at the lowest temperatures where the superfluid fraction is almost 100%, the strong correlations between the atoms forming the liquid deplete the population of the BoseEinstein condensate state to only 10% of the total mass. The situation is substantially different in dilute ultracold atomic gases. At low temperatures, such gases are in fact almost fully condensed and superfluid, but a conceptual difference still exists between the two properties. Researchers now routinely measure the condensate fraction by looking at the velocity distribution in timeof-flight images, but some conceptual aspects of superfluidity are still awaiting experimental investigation. In contrast to the complex microscopic structure of liquid helium, the simplicity of the theoretical description of dilute atomic gases allows a deep understanding of the basic mechanisms underlying superfluidity phenomena in simple terms. One of the neatest formulations of the concept of superfluidity involves the response of the fluid to rotation in the so-called “rotating bucket experiment”: while the normal component of the fluid is dragged by the bucket, the superfluid component is almost unaffected by the rotating walls [1]. This idea was first put into practice in 1946 by Andronikashvili using a torsional oscillator and a bulk three-dimensional sample of liquid helium (see Fig. 1, left panel): the appearance of a superfluid is detected by the drop in the moment of inertia [5]. Interesting measurements of the reduced moment of inertia of atomic Bose-Einstein condensates have been performed by looking at the frequency of the so-called scissors mode in an anisotropic trap and at the time evolution of the shape of an expanding condensate after releasing the trap [6]. The definition of superfluid fraction can be formulated in a formal and quantitative way in terms of the response of the fluid to an external vector field [7]. If placed in a rotating trap, neutral atoms behave in fact as if they were subject to a constant magnetic field parallel to the rotation axis; in this picture, the absence of response to rotation is the superfluid analog of the Meissner effect of superconductors in which magnetic fields are excluded from the material. Along these lines, it was soon recognized that the study of the response of the gas to artificial magnetic fields may offer a much wider range of experimental possibilities to investigate superfluidity. The idea of creating artificial magnetic fields for neu-" @default.
- W2027627296 created "2016-06-24" @default.
- W2027627296 creator A5039776049 @default.
- W2027627296 date "2010-01-19" @default.
- W2027627296 modified "2023-09-26" @default.
- W2027627296 title "Sorting superfluidity from Bose-Einstein condensation in atomic gases" @default.
- W2027627296 cites W1487002516 @default.
- W2027627296 cites W1602301868 @default.
- W2027627296 cites W1670589354 @default.
- W2027627296 cites W1979308046 @default.
- W2027627296 cites W2015286104 @default.
- W2027627296 cites W2018646543 @default.
- W2027627296 cites W2029715417 @default.
- W2027627296 cites W2033242478 @default.
- W2027627296 cites W2035577930 @default.
- W2027627296 cites W2051290863 @default.
- W2027627296 cites W2065504340 @default.
- W2027627296 cites W2070250156 @default.
- W2027627296 cites W2072775302 @default.
- W2027627296 cites W2083545947 @default.
- W2027627296 cites W2092219186 @default.
- W2027627296 cites W2094215816 @default.
- W2027627296 cites W4236735632 @default.
- W2027627296 doi "https://doi.org/10.1103/physics.3.5" @default.
- W2027627296 hasPublicationYear "2010" @default.
- W2027627296 type Work @default.
- W2027627296 sameAs 2027627296 @default.
- W2027627296 citedByCount "4" @default.
- W2027627296 countsByYear W20276272962013 @default.
- W2027627296 countsByYear W20276272962014 @default.
- W2027627296 crossrefType "journal-article" @default.
- W2027627296 hasAuthorship W2027627296A5039776049 @default.
- W2027627296 hasBestOaLocation W20276272961 @default.
- W2027627296 hasConcept C121332964 @default.
- W2027627296 hasConcept C184779094 @default.
- W2027627296 hasConcept C1855228 @default.
- W2027627296 hasConcept C200093464 @default.
- W2027627296 hasConcept C25536358 @default.
- W2027627296 hasConcept C26873012 @default.
- W2027627296 hasConcept C37589322 @default.
- W2027627296 hasConcept C49024897 @default.
- W2027627296 hasConcept C54101563 @default.
- W2027627296 hasConcept C546029482 @default.
- W2027627296 hasConcept C62520636 @default.
- W2027627296 hasConcept C75745590 @default.
- W2027627296 hasConcept C79118098 @default.
- W2027627296 hasConcept C94715708 @default.
- W2027627296 hasConcept C97355855 @default.
- W2027627296 hasConceptScore W2027627296C121332964 @default.
- W2027627296 hasConceptScore W2027627296C184779094 @default.
- W2027627296 hasConceptScore W2027627296C1855228 @default.
- W2027627296 hasConceptScore W2027627296C200093464 @default.
- W2027627296 hasConceptScore W2027627296C25536358 @default.
- W2027627296 hasConceptScore W2027627296C26873012 @default.
- W2027627296 hasConceptScore W2027627296C37589322 @default.
- W2027627296 hasConceptScore W2027627296C49024897 @default.
- W2027627296 hasConceptScore W2027627296C54101563 @default.
- W2027627296 hasConceptScore W2027627296C546029482 @default.
- W2027627296 hasConceptScore W2027627296C62520636 @default.
- W2027627296 hasConceptScore W2027627296C75745590 @default.
- W2027627296 hasConceptScore W2027627296C79118098 @default.
- W2027627296 hasConceptScore W2027627296C94715708 @default.
- W2027627296 hasConceptScore W2027627296C97355855 @default.
- W2027627296 hasLocation W20276272961 @default.
- W2027627296 hasOpenAccess W2027627296 @default.
- W2027627296 hasPrimaryLocation W20276272961 @default.
- W2027627296 hasRelatedWork W1487002516 @default.
- W2027627296 hasRelatedWork W1618124443 @default.
- W2027627296 hasRelatedWork W1642722218 @default.
- W2027627296 hasRelatedWork W1659310778 @default.
- W2027627296 hasRelatedWork W1815576030 @default.
- W2027627296 hasRelatedWork W1977403777 @default.
- W2027627296 hasRelatedWork W2001727959 @default.
- W2027627296 hasRelatedWork W2012639843 @default.
- W2027627296 hasRelatedWork W2023737512 @default.
- W2027627296 hasRelatedWork W2044320942 @default.
- W2027627296 hasRelatedWork W2072940562 @default.
- W2027627296 hasRelatedWork W2077317398 @default.
- W2027627296 hasRelatedWork W2169035486 @default.
- W2027627296 hasRelatedWork W2318727879 @default.
- W2027627296 hasRelatedWork W2604880297 @default.
- W2027627296 hasRelatedWork W3103856575 @default.
- W2027627296 hasRelatedWork W3105253931 @default.
- W2027627296 hasRelatedWork W3120620686 @default.
- W2027627296 hasRelatedWork W3126024795 @default.
- W2027627296 hasRelatedWork W3209748549 @default.
- W2027627296 isParatext "false" @default.
- W2027627296 isRetracted "false" @default.
- W2027627296 magId "2027627296" @default.
- W2027627296 workType "article" @default.