Matches in SemOpenAlex for { <https://semopenalex.org/work/W2027765812> ?p ?o ?g. }
- W2027765812 endingPage "2904" @default.
- W2027765812 startingPage "2898" @default.
- W2027765812 abstract "The Dictyostelium class I myosins, MyoA, -B, -C, and -D, participate in plasma membrane-based cellular processes such as pseudopod extension and macropinocytosis. Given the existence of a high affinity membrane-binding site in the C-terminal tail domain of these motor proteins and their localized site of action at the cortical membrane-cytoskeleton, it was of interest to determine whether each myosin I was directly associated with the plasma membrane. The membrane association of a myosin I heavy chain kinase that regulates the activity of one of the class I myosins, MyoD was also examined. Cellular fractionation experiments revealed that the majority of theDicyostelium MyoA, -B, -C and -D heavy chains and the kinase are cytosolic. However, a small, but significant, fraction (appr. 7. -15%) of each myosin I and the kinase was associated with the plasma membrane. The level of plasma membrane-associated MyoB, but neither that of MyoC nor MyoD, increases up to 2-fold in highly motile, streaming cells. These results indicate that Dictyosteliumspecifically recruits myoB to the plasma membrane during directed cell migration, consistent with its known role in pseudopod formation. The Dictyostelium class I myosins, MyoA, -B, -C, and -D, participate in plasma membrane-based cellular processes such as pseudopod extension and macropinocytosis. Given the existence of a high affinity membrane-binding site in the C-terminal tail domain of these motor proteins and their localized site of action at the cortical membrane-cytoskeleton, it was of interest to determine whether each myosin I was directly associated with the plasma membrane. The membrane association of a myosin I heavy chain kinase that regulates the activity of one of the class I myosins, MyoD was also examined. Cellular fractionation experiments revealed that the majority of theDicyostelium MyoA, -B, -C and -D heavy chains and the kinase are cytosolic. However, a small, but significant, fraction (appr. 7. -15%) of each myosin I and the kinase was associated with the plasma membrane. The level of plasma membrane-associated MyoB, but neither that of MyoC nor MyoD, increases up to 2-fold in highly motile, streaming cells. These results indicate that Dictyosteliumspecifically recruits myoB to the plasma membrane during directed cell migration, consistent with its known role in pseudopod formation. Src homology domain 3 myosin I heavy chain kinase 4-morpholineethanesulfonic acid 2-{[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]amino}ethanesulfonic acid polyacrylamide gel electrophoresis green fluorescent protein The class I myosins are expressed in a wide range of organisms and cell types where they have roles in moving membranes along actin filaments (1Mermall V. Post P.L. Mooseker M.S. Science. 1998; 279: 527-533Crossref PubMed Scopus (522) Google Scholar). They possess a conserved N-terminal motor domain, 1–6 light chain-binding sites, and a C-terminal tail that has a region rich in basic residues (the polybasic domain). The polybasic domain binds directly to either pure anionic phospholipid vesicles or stripped native plasma membranes with high affinity, in the 100 nmrange, in vitro (2Adams R.J. Pollard T.D. Nature. 1989; 340: 565-568Crossref PubMed Scopus (203) Google Scholar, 3Miyata H. Bowers B. Korn E.D. J. Cell Biol. 1989; 109: 1519-1528Crossref PubMed Scopus (79) Google Scholar, 4Doberstein S.K. Pollard T.D. J. Cell Biol. 1992; 117: 1241-1249Crossref PubMed Scopus (102) Google Scholar). Phylogenetic analyses reveals that there are at least four myosin I subclasses. The amoeboid subclass is the most widely expressed and its members are distinguished by the presence of two additional C-terminal tail domains (5Pollard T.D. Doberstein S.K. Zot H.G. Annu. Rev. Physiol. 1991; 53: 653-681Crossref PubMed Google Scholar, 6Coluccio L.M. Am. J. Physiol. 1997; 273: C347-C359Crossref PubMed Google Scholar). The first is a region rich in glycine, proline, and alanine (or serine or glutamate), referred to as the GPA domain, that binds to actin in an ATP-insensitive manner, and the second is a Src homology 3 (SH3)1 domain either at the extreme C terminus or within the GPA domain (4Doberstein S.K. Pollard T.D. J. Cell Biol. 1992; 117: 1241-1249Crossref PubMed Scopus (102) Google Scholar, 7Lynch T.J. Albanesi J.P. Korn E.D. Robinson E.A. Bowers B.A. Fujisaki H. J. Biol. Chem. 1986; 261: 17156-17262Abstract Full Text PDF PubMed Google Scholar, 8Jung G. Hammer III, J.A. FEBS Lett. 1994; 342: 197-202Crossref PubMed Scopus (58) Google Scholar, 9Rosenfeld S.S. Rener B. Biochemistry. 1994; 33: 2322-2328Crossref PubMed Scopus (39) Google Scholar). The SH3 domain is essential for myosin I function (10Novak K.D. Titus M.A. J. Cell Biol. 1997; 136: 633-648Crossref PubMed Scopus (67) Google Scholar, 11Anderson B.L. Boldogh I. Evangelista M. Boone C. Greene L.A. Pon L.A. J. Cell Biol. 1998; 141: 1357-1370Crossref PubMed Scopus (103) Google Scholar, 12Novak K.D. Titus M.A. Mol. Biol. Cell. 1998; 9: 75-88Crossref PubMed Scopus (55) Google Scholar), however, in the case of aDictyostelium and a mammalian myosin I, it does not play a role in localization (12Novak K.D. Titus M.A. Mol. Biol. Cell. 1998; 9: 75-88Crossref PubMed Scopus (55) Google Scholar, 13Stöffler H.E. Honnert U. Bauer C.A. Höfer D. Schwarz H. Müller R.T. Drenckhahn D. Bähler M. J. Cell Sci. 1998; 111: 2779-2788PubMed Google Scholar) but does in the case of a yeast myosin I (11Anderson B.L. Boldogh I. Evangelista M. Boone C. Greene L.A. Pon L.A. J. Cell Biol. 1998; 141: 1357-1370Crossref PubMed Scopus (103) Google Scholar).Molecular genetic analysis of myosin I function in yeast,Aspergillus, and Dictyostelium reveals that the individual members of this family have distinct, yet overlapping roles in mediating the functions of the cortical actin cytoskeleton (14McGoldrick C.A. Gruver C. May G.S. J. Cell Biol. 1995; 128: 577-587Crossref PubMed Scopus (172) Google Scholar, 15Novak K.D. Peterson M.D. Reedy M.C. Titus M.A. J. Cell Biol. 1995; 131: 1205-1221Crossref PubMed Scopus (164) Google Scholar, 16Geli M.I. Riezman H. Science. 1996; 272: 533-535Crossref PubMed Scopus (232) Google Scholar, 17Goodson H.V. Anderson B.L. Warrick H.M. Pon L.A. Spudich J.A. J. Cell Biol. 1996; 133: 1277-1291Crossref PubMed Scopus (186) Google Scholar, 18Jung G. Wu X. Hammer III, J.A. J. Cell Biol. 1996; 133: 305-323Crossref PubMed Scopus (153) Google Scholar). These include nonreceptor mediated fluid-phase uptake (i.e.macropinocytosis (15Novak K.D. Peterson M.D. Reedy M.C. Titus M.A. J. Cell Biol. 1995; 131: 1205-1221Crossref PubMed Scopus (164) Google Scholar, 16Geli M.I. Riezman H. Science. 1996; 272: 533-535Crossref PubMed Scopus (232) Google Scholar, 17Goodson H.V. Anderson B.L. Warrick H.M. Pon L.A. Spudich J.A. J. Cell Biol. 1996; 133: 1277-1291Crossref PubMed Scopus (186) Google Scholar, 18Jung G. Wu X. Hammer III, J.A. J. Cell Biol. 1996; 133: 305-323Crossref PubMed Scopus (153) Google Scholar)), exocytosis (14McGoldrick C.A. Gruver C. May G.S. J. Cell Biol. 1995; 128: 577-587Crossref PubMed Scopus (172) Google Scholar, 16Geli M.I. Riezman H. Science. 1996; 272: 533-535Crossref PubMed Scopus (232) Google Scholar, 19Temesvari L.A. Bush J.M. Peterson M.D. Novak K.D. Titus M.A. Cardelli J.A. J. Cell Sci. 1996; 109: 663-673PubMed Google Scholar), the orderly extension of pseudopodia during cell migration (20Wessels D. Murray J. Jung G. Hammer III, J.A. Soll D.R. Cell Motil. Cytoskeleton. 1991; 20: 301-315Crossref PubMed Scopus (112) Google Scholar, 21Titus M.A. Wessels D. Spudich J.A. Soll D. Mol. Biol. Cell. 1993; 4: 233-246Crossref PubMed Scopus (117) Google Scholar, 22Wessels D. Titus M.A. Soll D.R. Cell Motil. Cytoskeleton. 1996; 33: 64-79Crossref PubMed Scopus (64) Google Scholar),and regulation of the distribution of cortical F-actin (15Novak K.D. Peterson M.D. Reedy M.C. Titus M.A. J. Cell Biol. 1995; 131: 1205-1221Crossref PubMed Scopus (164) Google Scholar, 17Goodson H.V. Anderson B.L. Warrick H.M. Pon L.A. Spudich J.A. J. Cell Biol. 1996; 133: 1277-1291Crossref PubMed Scopus (186) Google Scholar). The nature of the roles played by myosin Is suggests that they may specifically interact with the plasma membrane and intracellular transport vesicles such as early endosomes or lysosomes.The mechanism by which myosin I interacts with membranes in vivo and how that interaction is regulated remains unclear. The ability of the polybasic domain to mediate the binding of myosin I to membranes via electrostatic interactions (2Adams R.J. Pollard T.D. Nature. 1989; 340: 565-568Crossref PubMed Scopus (203) Google Scholar, 3Miyata H. Bowers B. Korn E.D. J. Cell Biol. 1989; 109: 1519-1528Crossref PubMed Scopus (79) Google Scholar, 4Doberstein S.K. Pollard T.D. J. Cell Biol. 1992; 117: 1241-1249Crossref PubMed Scopus (102) Google Scholar) indicates that this motor protein could interact nonspecifically with any membrane that contains negative phospholipids such as phosphatidylserine. This suggests that in Dictyostelium, for example, myosin I could be associated with the contractile vacuole, the plasma membrane, and lysosomes, all compartments that contain least 15–20% acidic phospholipids (23Nolta K.V. Padh H. Steck T.L. J. Biol. Chem. 1991; 266: 18318-18323Abstract Full Text PDF PubMed Google Scholar). However, the amoeboid myosin Is are discretely localized to particular membrane compartments as well as in regions enriched for actin (3Miyata H. Bowers B. Korn E.D. J. Cell Biol. 1989; 109: 1519-1528Crossref PubMed Scopus (79) Google Scholar, 17Goodson H.V. Anderson B.L. Warrick H.M. Pon L.A. Spudich J.A. J. Cell Biol. 1996; 133: 1277-1291Crossref PubMed Scopus (186) Google Scholar, 24Gadasi H. Korn E.D. Nature. 1980; 286: 452-456Crossref PubMed Scopus (37) Google Scholar, 25Fukui Y. Lynch T.J. Brzeska H. Korn E.D. Nature. 1989; 341: 328-331Crossref PubMed Scopus (237) Google Scholar, 26Baines I.C. Brzeska H. Korn E.D. J. Cell Biol. 1992; 119: 1193-1203Crossref PubMed Scopus (84) Google Scholar, 27Yonemura S. Pollard T.D. J. Cell Sci. 1992; 102: 629-642PubMed Google Scholar, 28Stöffler H.E. Ruppert C. Reinhard J. Bähler M. J. Cell Biol. 1995; 129: 819-830Crossref PubMed Scopus (54) Google Scholar). Therefore, there must be a mechanism to direct the specific membrane association of myosin Iin vivo, such as a receptor.A complete understanding of the mechanism(s) by which myosin I may be localized within the cell requires the isolation of a myosin I-containing membrane fraction and identification of factors that may interact with myosin I either in the cytosol or on specific membranes to determine its localization in vivo. Dictyostelium has emerged as an excellent system for such studies as several of the amoeboid myosin Is have been purified and analyzed (29Lee S.F. Côté G.P. J. Biol. Chem. 1993; 268: 20923-20929Abstract Full Text PDF PubMed Google Scholar) and information regarding their in vivo roles has been obtained by molecular genetic methods (30Uyeda T.Q.P. Titus M.A. Maeda Y. Inouye K. Takeuchi I. Dictyostelium: a Model System for Cell and Developmental Biology. University Academy Press, Tokyo, Japan1997: 43-64Google Scholar).Therefore, an analysis of the membrane association of severalDictyostelium myosin Is, MyoA, -B, -C, and -D, and a myosin I heavy chain kinase (MIHCK) that regulates the activity of MyoD (31Lee S.F. Côté G.P. J. Biol. Chem. 1995; 270: 11776-11782Abstract Full Text Full Text PDF PubMed Scopus (45) Google Scholar) has been performed as the first step in elucidating how their subcellular distribution and, by extension, their function, may be controlled.DISCUSSIONThe membrane association of four Dictyostelium myosin Is, MyoA, -B, -C, and -D, has been investigated using a fractionation approach. Despite the presence of a high affinity membrane-binding domain in their C termini, only a small fraction, 7–15%, of each is membrane-associated (Fig. 1). The association membranes appears to be mediated by the polybasic domain, as a MyoB tail fragment lacking this domain is not membrane-associated (Fig. 5 B). The finding that the majority of each myosin I is found in the cytosolic fraction is consistent with earlier observations that 80% of the total high salt K+-ATPase activity (presumably contributed largely by the myosin I) in a low salt Dictyostelium lysate is soluble (29Lee S.F. Côté G.P. J. Biol. Chem. 1993; 268: 20923-20929Abstract Full Text PDF PubMed Google Scholar). Acanthamoeba myosin IA is also largely cytosolic, as determined by quantitative immunoelectron microscopy (26Baines I.C. Brzeska H. Korn E.D. J. Cell Biol. 1992; 119: 1193-1203Crossref PubMed Scopus (84) Google Scholar). However, a large proportion of the closely related Acanthamoeba myosin Is, myosin IB and -IC, are membrane associated (26Baines I.C. Brzeska H. Korn E.D. J. Cell Biol. 1992; 119: 1193-1203Crossref PubMed Scopus (84) Google Scholar). Additionally, it has been reported that two different forms of mammalian myosin I, Myr1 and Myr2 (nonamoeboid type myosin Is), are membrane associated in rat liver and smooth muscle cells (54Hasegawa Y. Tsuwaki S. Yamada N. Araki T. Kimura S. Sugawara J. Yamamoto K. Okamoto Y. J. Biochem. (Tokyo). 1998; 124: 421-427Crossref PubMed Scopus (3) Google Scholar, 55Balish M.F. Moeller E.F. Coluccio L.M. Arch. Biochem. Biophys. 1999; 370: 285-293Crossref PubMed Scopus (17) Google Scholar). These myosins also appear to be associated with more than one membrane compartment, although they are predominantly found in Golgi (Myr2 in rat liver) or plasma membrane (Myr1 in rat liver) fractions. This indicates that there must be specific sequences in each myosin I that directs a particular myosin to the appropriate membrane compartment and also regulates the proportion of that myosin that is cytosolic or membrane-bound. These unidentified distinctive tail sequences that most likely reside in the polybasic domain could directly play a role in targeting these myosins to a receptor on the appropriate membrane. Alternatively, they could be responsible for associating with a cytosolic protein that prevents binding to membranes or plays a role in mediating myosin I-myosin I interactions in the lipid bilayer.The MIHCK that regulates MyoD activity was also found to be largely cytosolic under our fractionation conditions. Only a small proportion was found in the total membrane fraction following lysis of the cells (Fig. 1). In contrast to this result, a more significant amount of MIHCK was found in association with a high speed pellet that contains total membranes and the cytoskeleton when cells are directly lysed in the presence of 20 mm salt (47Lee S.F. Mahasneh A. de la Roche M. Côté G.P. J. Biol. Chem. 1998; 273: 27911-27917Abstract Full Text Full Text PDF PubMed Scopus (27) Google Scholar). This binding was significantly reduced, but not abolished, when the salt concentration was raised to 100 mm, suggesting that MIHCK binding to the membrane under low salt conditions can occur via electrostatic interactions (47Lee S.F. Mahasneh A. de la Roche M. Côté G.P. J. Biol. Chem. 1998; 273: 27911-27917Abstract Full Text Full Text PDF PubMed Scopus (27) Google Scholar).The Dictyostelium myosin Is cofractionate with plasma membranes (Figs. 2, C and D, and 3 A) and do not appear to be bound to any other membrane compartment such as lysosomes or contractile vacuoles, indicating that there is a mechanism for specific association of the amoeboid myosin I with the plasma membrane in Dictyostelium. These results are consistent with immunolocalization experiments that found these myosins present at or near the plasma membrane (25Fukui Y. Lynch T.J. Brzeska H. Korn E.D. Nature. 1989; 341: 328-331Crossref PubMed Scopus (237) Google Scholar, 56Morita Y.S. Jung G. Hammer III, J.A. Fukui Y. Eur. J. Cell Biol. 1996; 71: 371-379PubMed Google Scholar). The localization of the four myosin Is to the plasma membrane is consistent with mutant analyses that implicate MyoA and MyoB in cell migration (20Wessels D. Murray J. Jung G. Hammer III, J.A. Soll D.R. Cell Motil. Cytoskeleton. 1991; 20: 301-315Crossref PubMed Scopus (112) Google Scholar, 21Titus M.A. Wessels D. Spudich J.A. Soll D. Mol. Biol. Cell. 1993; 4: 233-246Crossref PubMed Scopus (117) Google Scholar) and all of these myosin I in macropinocytosis (15Novak K.D. Peterson M.D. Reedy M.C. Titus M.A. J. Cell Biol. 1995; 131: 1205-1221Crossref PubMed Scopus (164) Google Scholar, 18Jung G. Wu X. Hammer III, J.A. J. Cell Biol. 1996; 133: 305-323Crossref PubMed Scopus (153) Google Scholar), functions that require the activity of the actin-rich membrane cortex of cells.There is a specific recruitment of MyoB (2-fold, Table II) to the plasma membrane during chemotaxis (Table I). The net increase in membrane-associated MyoB is substantial if one takes into account the observation that there is an overall 5-fold increase in the total amount of this protein during streaming (18Jung G. Wu X. Hammer III, J.A. J. Cell Biol. 1996; 133: 305-323Crossref PubMed Scopus (153) Google Scholar). Thus, streaming cells have 10 times more MyoB on the plasma membrane than do normal growth phase cells. This recruitment of MyoB may be required for controlling appropriate pseudopod formation as myoB −mutants extend an increased number of pseudopodia (20Wessels D. Murray J. Jung G. Hammer III, J.A. Soll D.R. Cell Motil. Cytoskeleton. 1991; 20: 301-315Crossref PubMed Scopus (112) Google Scholar). In contrast, significantly less MyoC and MyoD is present on the plasma membrane in streaming cells. The total amounts of these myosin I are lower than that of MyoB and they do not increase during streaming (18Jung G. Wu X. Hammer III, J.A. J. Cell Biol. 1996; 133: 305-323Crossref PubMed Scopus (153) Google Scholar), and a much smaller increase in their association with the membrane is observed (Table I). The lower levels of plasma membrane-associated MyoC and MyoD in streaming cells are consistent with the finding thatmyoC − and myoD − mutants move at normal rates of speed and do not exhibit any delays in streaming (51Jung G. Fukui Y. Martin B. Hammer III, J.A. J. Biol. Chem. 1993; 268: 14981-14990Abstract Full Text PDF PubMed Google Scholar, 52Peterson M.D. Novak K.D. Reedy M.C. Ruman J.I. Titus M.A. J. Cell Sci. 1995; 108: 1093-1103PubMed Google Scholar).The finding that the deletion of a single amoeboid myosin I from either yeast or Dictyostelium does not result in profound phenotypes, suggests that these motors share overlapping roles (15Novak K.D. Peterson M.D. Reedy M.C. Titus M.A. J. Cell Biol. 1995; 131: 1205-1221Crossref PubMed Scopus (164) Google Scholar, 16Geli M.I. Riezman H. Science. 1996; 272: 533-535Crossref PubMed Scopus (232) Google Scholar, 17Goodson H.V. Anderson B.L. Warrick H.M. Pon L.A. Spudich J.A. J. Cell Biol. 1996; 133: 1277-1291Crossref PubMed Scopus (186) Google Scholar, 18Jung G. Wu X. Hammer III, J.A. J. Cell Biol. 1996; 133: 305-323Crossref PubMed Scopus (153) Google Scholar). In addition, compensation for the loss of one myosin I by another could occur either up-regulation of the activity or amount of one or more remaining myosin I. Examination of the remaining amoeboid myosin Is (MyoC and MyoD) in the myoA − andmyoB − cells and MyoB in themyoA − cells reveals that the overall levels of these myosin Is are not increased in the mutants (Table II). However, there is a 2-fold increase in the amount of membrane-associated MyoC and -D in the myoA − andmyoB − mutants (Table II). The availability of free myosin I-binding sites on the plasma membrane may allow an increased amount of MyoC and MyoD to bind to the plasma membrane. Alternatively, the mutant cells may have a mechanism for increasing the recruitment of the remaining myosin I to the plasma membrane during streaming in an effort to compensate for the loss of either MyoA or MyoB. The 2-fold increase in the levels of membrane-associated MyoC and MyoD in the myoA − ormyoB − mutants (Table II) is clearly insufficient to compensate for the loss of either of these myosin I. This is most likely due to the fact that the levels of MyoC and -D expressed by the cell during streaming are significantly lower than those of MyoB (18Jung G. Wu X. Hammer III, J.A. J. Cell Biol. 1996; 133: 305-323Crossref PubMed Scopus (153) Google Scholar). However, there is evidence that the relatively small increase in MyoC and -D on the plasma membrane could be playing a role in maintaining some level of normal function related to motility in the mutant cells. The motility of amyoB −/D − double mutant does not appear to be worse than that of themyoB − single mutant, however, themyoB −/C −/D −triple mutant moves a bit more slowly and is more severely delayed in streaming (18Jung G. Wu X. Hammer III, J.A. J. Cell Biol. 1996; 133: 305-323Crossref PubMed Scopus (153) Google Scholar). Thus, MyoC may play a role in the efficient motility ofDictyostelium myosin I mutants but, despite increased recruitment to the plasma membrane, it is not sufficient to fully compensate for the loss of MyoB.The role of membrane association in myosin I function remains unclear. A kinetic analysis of two Acanthamoeba myosin Is, IA and IB, demonstrates that this class of motor protein is not proccessive, and indicates that myosin I must tightly gather on membranes and/or the actin cytoskeleton to power membrane movement or contraction of the actin cortex (57Ostap E.M. Pollard T.D. J. Cell Biol. 1996; 132: 1053-1060Crossref PubMed Scopus (82) Google Scholar). Ostap and Pollard (57Ostap E.M. Pollard T.D. J. Cell Biol. 1996; 132: 1053-1060Crossref PubMed Scopus (82) Google Scholar) estimated that a cluster of at least 20 molecules of myosin I would be necessary for membrane-based myosin I function. The present results showing 32 molecules of MyoB present per μm2 of plasma membrane would suggest that this amount is insufficient to move the plasma membrane along actin if it were uniformly dispersed across the inner plasma membrane surface. However, immunolocalization data indicate that all three of theDictyostelium amoeboid myosin Is are specifically concentrated in one region of the cell (such as in an extending pseudopod or macropinocytic ruffle) (25Fukui Y. Lynch T.J. Brzeska H. Korn E.D. Nature. 1989; 341: 328-331Crossref PubMed Scopus (237) Google Scholar, 56Morita Y.S. Jung G. Hammer III, J.A. Fukui Y. Eur. J. Cell Biol. 1996; 71: 371-379PubMed Google Scholar). A highly motile, chemotactic cell must have a high local concentration of MyoB on the plasma membrane. This would result from a combination of a 5-fold increase in levels of MyoB (when compared with growth phase cells) and a 2-fold overall increase in MyoB on the plasma membrane during streaming (18Jung G. Wu X. Hammer III, J.A. J. Cell Biol. 1996; 133: 305-323Crossref PubMed Scopus (153) Google Scholar) (Table II). The average amount of plasma-membrane bound MyoB in chemotactic cells, now increased to 320 molecules per μm2, could occupy 0.1 μm2 (assuming that 20 molecules of myosin I occupy 25 × 25 nm on the plasma membrane; Jontes and Milligan as cited in Ref. 57Ostap E.M. Pollard T.D. J. Cell Biol. 1996; 132: 1053-1060Crossref PubMed Scopus (82) Google Scholar) of the membrane surface. In other words, 10% of the unit membrane area would be covered by MyoB. Given that the average length of F-actin in Dictyostelium is 0.2 μm (58Podolski J.L. Steck T.L. J. Biol. Chem. 1990; 265: 1312-1318Abstract Full Text PDF PubMed Google Scholar), this appears to be sufficient to generate force for motility along F-actin. Therefore, the membrane association of MyoB could potentially be important in allowing this myosin I to participate in the regulated formation of pseudopodia during directed migration, consistent with the finding that deletion of MyoB results in significant defects in pseudopod formation (20Wessels D. Murray J. Jung G. Hammer III, J.A. Soll D.R. Cell Motil. Cytoskeleton. 1991; 20: 301-315Crossref PubMed Scopus (112) Google Scholar). The class I myosins are expressed in a wide range of organisms and cell types where they have roles in moving membranes along actin filaments (1Mermall V. Post P.L. Mooseker M.S. Science. 1998; 279: 527-533Crossref PubMed Scopus (522) Google Scholar). They possess a conserved N-terminal motor domain, 1–6 light chain-binding sites, and a C-terminal tail that has a region rich in basic residues (the polybasic domain). The polybasic domain binds directly to either pure anionic phospholipid vesicles or stripped native plasma membranes with high affinity, in the 100 nmrange, in vitro (2Adams R.J. Pollard T.D. Nature. 1989; 340: 565-568Crossref PubMed Scopus (203) Google Scholar, 3Miyata H. Bowers B. Korn E.D. J. Cell Biol. 1989; 109: 1519-1528Crossref PubMed Scopus (79) Google Scholar, 4Doberstein S.K. Pollard T.D. J. Cell Biol. 1992; 117: 1241-1249Crossref PubMed Scopus (102) Google Scholar). Phylogenetic analyses reveals that there are at least four myosin I subclasses. The amoeboid subclass is the most widely expressed and its members are distinguished by the presence of two additional C-terminal tail domains (5Pollard T.D. Doberstein S.K. Zot H.G. Annu. Rev. Physiol. 1991; 53: 653-681Crossref PubMed Google Scholar, 6Coluccio L.M. Am. J. Physiol. 1997; 273: C347-C359Crossref PubMed Google Scholar). The first is a region rich in glycine, proline, and alanine (or serine or glutamate), referred to as the GPA domain, that binds to actin in an ATP-insensitive manner, and the second is a Src homology 3 (SH3)1 domain either at the extreme C terminus or within the GPA domain (4Doberstein S.K. Pollard T.D. J. Cell Biol. 1992; 117: 1241-1249Crossref PubMed Scopus (102) Google Scholar, 7Lynch T.J. Albanesi J.P. Korn E.D. Robinson E.A. Bowers B.A. Fujisaki H. J. Biol. Chem. 1986; 261: 17156-17262Abstract Full Text PDF PubMed Google Scholar, 8Jung G. Hammer III, J.A. FEBS Lett. 1994; 342: 197-202Crossref PubMed Scopus (58) Google Scholar, 9Rosenfeld S.S. Rener B. Biochemistry. 1994; 33: 2322-2328Crossref PubMed Scopus (39) Google Scholar). The SH3 domain is essential for myosin I function (10Novak K.D. Titus M.A. J. Cell Biol. 1997; 136: 633-648Crossref PubMed Scopus (67) Google Scholar, 11Anderson B.L. Boldogh I. Evangelista M. Boone C. Greene L.A. Pon L.A. J. Cell Biol. 1998; 141: 1357-1370Crossref PubMed Scopus (103) Google Scholar, 12Novak K.D. Titus M.A. Mol. Biol. Cell. 1998; 9: 75-88Crossref PubMed Scopus (55) Google Scholar), however, in the case of aDictyostelium and a mammalian myosin I, it does not play a role in localization (12Novak K.D. Titus M.A. Mol. Biol. Cell. 1998; 9: 75-88Crossref PubMed Scopus (55) Google Scholar, 13Stöffler H.E. Honnert U. Bauer C.A. Höfer D. Schwarz H. Müller R.T. Drenckhahn D. Bähler M. J. Cell Sci. 1998; 111: 2779-2788PubMed Google Scholar) but does in the case of a yeast myosin I (11Anderson B.L. Boldogh I. Evangelista M. Boone C. Greene L.A. Pon L.A. J. Cell Biol. 1998; 141: 1357-1370Crossref PubMed Scopus (103) Google Scholar). Molecular genetic analysis of myosin I function in yeast,Aspergillus, and Dictyostelium reveals that the individual members of this family have distinct, yet overlapping roles in mediating the functions of the cortical actin cytoskeleton (14McGoldrick C.A. Gruver C. May G.S. J. Cell Biol. 1995; 128: 577-587Crossref PubMed Scopus (172) Google Scholar, 15Novak K.D. Peterson M.D. Reedy M.C. Titus M.A. J. Cell Biol. 1995; 131: 1205-1221Crossref PubMed Scopus (164) Google Scholar, 16Geli M.I. Riezman H. Science. 1996; 272: 533-535Crossref PubMed Scopus (232) Google Scholar, 17Goodson H.V. Anderson B.L. Warrick H.M. Pon L.A. Spudich J.A. J. Cell Biol. 1996; 133: 1277-1291Crossref PubMed Scopus (186) Google Scholar, 18Jung G. Wu X. Hammer III, J.A. J. Cell Biol. 1996; 133: 305-323Crossref PubMed Scopus (153) Google Scholar). These include nonreceptor mediated fluid-phase uptake (i.e.macropinocytosis (15Novak K.D. Peterson M.D. Reedy M.C. Titus M.A. J. Cell Biol. 1995; 131: 1205-1221Crossref PubMed Scopus (164) Google Scholar, 16Geli M.I. Riezman H. Science. 1996; 272: 533-535Crossref PubMed Scopus (232) Google Scholar, 17Goodson H.V. Anderson B.L. Warrick H.M. Pon L.A. Spudich J.A. J. Cell Biol. 1996; 133: 1277-1291Crossref PubMed Scopus (186) Google Scholar, 18Jung G. Wu X. Hammer III, J.A. J. Cell Biol. 1996; 133: 305-323Crossref PubMed Scopus (153) Google Scholar)), exocytosis (14McGoldrick C.A. Gruver C. May G.S. J. Cell Biol. 1995; 128: 577-587Crossref PubMed Scopus (172) Google Scholar, 16Geli M.I. Riezman H. Science. 1996; 272: 533-535Crossref PubMed Scopus (232) Google Scholar, 19Temesvari L.A. Bush J.M. Peterson M.D. Novak K.D. Titus M.A. Cardelli J.A. J. Cell Sci. 1996; 109: 663-673PubMed Google Scholar), the orderly extension of pseudopodia during cell migration (20Wessels D. Murray J. Jung G. Hammer III, J.A. Soll D.R. Cell Motil. Cytoskeleton. 1991; 20: 301-315Crossref PubMed Scopus (112) Google Scholar, 21Titus M.A. Wessels D. Spudich J.A. Soll D. Mol. Biol. Cell. 1993; 4: 233-246Crossref PubMed Scopus (117) Google Scholar, 22Wessels D. Titus M.A. Soll D.R. Cell Motil. Cytoskeleton. 1996; 33: 64-79Crossref PubMed Scopus (64) Google Scholar),and regulation of the distribution of cortical F-actin (15Novak K.D. Peterson M.D. Reedy M.C. Titus M.A. J. Cell Biol. 1995; 131: 1205-1221Crossref PubMed Scopus (164) Google Scholar, 17Goodson H.V. Anderson B.L. Warrick H.M. Pon L.A. Spudich J.A. J. Cell Biol. 1996; 133: 1277-1291Crossref PubMed Scopus (186) Google Scholar). The nature of the roles played by myosin Is suggests that they may specifically interact with the plasma membrane and intracellular transport vesicles such as early endosomes or lysosomes. The mechanism by which myosin I interacts with membranes in vivo and how that interaction is regulated remains unclear. The ability of the polybasic domain to mediate the binding of myosin I to membranes via electrostatic" @default.
- W2027765812 created "2016-06-24" @default.
- W2027765812 creator A5006678565 @default.
- W2027765812 creator A5017277857 @default.
- W2027765812 creator A5032525715 @default.
- W2027765812 creator A5047002160 @default.
- W2027765812 date "2001-01-01" @default.
- W2027765812 modified "2023-09-30" @default.
- W2027765812 title "Recruitment of a Specific Amoeboid Myosin I Isoform to the Plasma Membrane in Chemotactic DictyosteliumCells" @default.
- W2027765812 cites W1028079340 @default.
- W2027765812 cites W1533610915 @default.
- W2027765812 cites W1538306134 @default.
- W2027765812 cites W1579490087 @default.
- W2027765812 cites W1587270388 @default.
- W2027765812 cites W1595518633 @default.
- W2027765812 cites W1599929086 @default.
- W2027765812 cites W1753054392 @default.
- W2027765812 cites W1792892656 @default.
- W2027765812 cites W1844531252 @default.
- W2027765812 cites W1915591814 @default.
- W2027765812 cites W1981611294 @default.
- W2027765812 cites W1985046755 @default.
- W2027765812 cites W1993458739 @default.
- W2027765812 cites W1998189172 @default.
- W2027765812 cites W2006762292 @default.
- W2027765812 cites W2011756605 @default.
- W2027765812 cites W2020867437 @default.
- W2027765812 cites W2022975161 @default.
- W2027765812 cites W2023951174 @default.
- W2027765812 cites W2025882607 @default.
- W2027765812 cites W2029818294 @default.
- W2027765812 cites W2038530502 @default.
- W2027765812 cites W2046907109 @default.
- W2027765812 cites W2063056851 @default.
- W2027765812 cites W2063861664 @default.
- W2027765812 cites W2070497054 @default.
- W2027765812 cites W2075890294 @default.
- W2027765812 cites W2077116555 @default.
- W2027765812 cites W2079330008 @default.
- W2027765812 cites W2089722298 @default.
- W2027765812 cites W2093082265 @default.
- W2027765812 cites W2093373720 @default.
- W2027765812 cites W2096945586 @default.
- W2027765812 cites W2100032334 @default.
- W2027765812 cites W2101024664 @default.
- W2027765812 cites W2111532656 @default.
- W2027765812 cites W2127601291 @default.
- W2027765812 cites W2132096360 @default.
- W2027765812 cites W2145954184 @default.
- W2027765812 cites W2148214888 @default.
- W2027765812 cites W2149176604 @default.
- W2027765812 cites W2156819631 @default.
- W2027765812 cites W2169738395 @default.
- W2027765812 cites W2181469533 @default.
- W2027765812 cites W2184823831 @default.
- W2027765812 cites W2189963407 @default.
- W2027765812 cites W2258058808 @default.
- W2027765812 cites W2316804815 @default.
- W2027765812 cites W2342449331 @default.
- W2027765812 cites W2415253813 @default.
- W2027765812 cites W2415441754 @default.
- W2027765812 cites W4235326831 @default.
- W2027765812 cites W4243962672 @default.
- W2027765812 doi "https://doi.org/10.1074/jbc.m008059200" @default.
- W2027765812 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11058595" @default.
- W2027765812 hasPublicationYear "2001" @default.
- W2027765812 type Work @default.
- W2027765812 sameAs 2027765812 @default.
- W2027765812 citedByCount "17" @default.
- W2027765812 countsByYear W20277658122012 @default.
- W2027765812 countsByYear W20277658122015 @default.
- W2027765812 countsByYear W20277658122016 @default.
- W2027765812 crossrefType "journal-article" @default.
- W2027765812 hasAuthorship W2027765812A5006678565 @default.
- W2027765812 hasAuthorship W2027765812A5017277857 @default.
- W2027765812 hasAuthorship W2027765812A5032525715 @default.
- W2027765812 hasAuthorship W2027765812A5047002160 @default.
- W2027765812 hasConcept C104317684 @default.
- W2027765812 hasConcept C170493617 @default.
- W2027765812 hasConcept C185592680 @default.
- W2027765812 hasConcept C53345823 @default.
- W2027765812 hasConcept C54166955 @default.
- W2027765812 hasConcept C55493867 @default.
- W2027765812 hasConcept C6997183 @default.
- W2027765812 hasConcept C86803240 @default.
- W2027765812 hasConcept C95444343 @default.
- W2027765812 hasConceptScore W2027765812C104317684 @default.
- W2027765812 hasConceptScore W2027765812C170493617 @default.
- W2027765812 hasConceptScore W2027765812C185592680 @default.
- W2027765812 hasConceptScore W2027765812C53345823 @default.
- W2027765812 hasConceptScore W2027765812C54166955 @default.
- W2027765812 hasConceptScore W2027765812C55493867 @default.
- W2027765812 hasConceptScore W2027765812C6997183 @default.
- W2027765812 hasConceptScore W2027765812C86803240 @default.
- W2027765812 hasConceptScore W2027765812C95444343 @default.
- W2027765812 hasIssue "4" @default.
- W2027765812 hasLocation W20277658121 @default.
- W2027765812 hasOpenAccess W2027765812 @default.