Matches in SemOpenAlex for { <https://semopenalex.org/work/W2027831293> ?p ?o ?g. }
- W2027831293 endingPage "12645" @default.
- W2027831293 startingPage "12627" @default.
- W2027831293 abstract "Abstract. Aerosol size distribution, total concentration (i.e. condensation nuclei (CN) concentration, NCN), cloud condensation nuclei (CCN) concentration (NCCN), hygroscopicity at ~90% relative humidity (RH) were measured at a background monitoring site at Gosan, Jeju Island, south of the Korean Peninsula in August 2006, April to May 2007 and August to October 2008. Similar measurements took place in August 2009 at another background site (Baengnyeongdo Comprehensive Monitoring Observatory, BCMO) on the island of Baengnyeongdo, off the west coast of the Korean Peninsula. Both islands were found to be influenced by continental sources regardless of season and year. Average values for all of the measured NCCN at 0.2, 0.6 and 1.0% supersaturations (S), NCN, and geometric mean diameter (Dg) from both islands were in the range of 1043–3051 cm−3, 2076–4360 cm−3, 2713–4694 cm−3, 3890–5117 cm−3 and 81–98 nm, respectively. Although the differences in Dg and NCN were small between Gosan and BCMO, NCCN at various S was much higher at the latter, which is closer to China. Most of the aerosols were internally mixed and no notable differences in hygroscopicity were found between the days of strong pollution influence and the non-pollution days for both islands. During the 2008 and 2009 campaigns, critical supersaturation for CCN nucleation (Sc) for selected particle sizes was measured. Particles of 100 nm diameters had mean Sc of 0.19 ± 0.02% during 2008 and those of 81 and 110 nm diameters had mean Sc of 0.26 ± 0.07% and 0.17 ± 0.04%, respectively, during 2009. The values of the hygroscopicity parameter (κ), estimated from measured Sc, were mostly higher than the κ values obtained from the measured hygroscopic growth at ~90% RH. For the 2008 campaign, NCCN at 0.2, 0.6 and 1.0% S were predicted based on measured dry particle size distributions and various ways of representing particle hygroscopicity. The best closure was obtained when temporally varying and size-resolved hygroscopicity information from the HTDMA was used, for which the average relative deviations from the measured values were 28 ± 20% for 0.2% S (mostly under-prediction), 25 ± 52% for 0.6% (balanced between over- and under-prediction) and 19 ± 15% for 1.0% S (balanced). Prescribing a constant hygroscopicity parameter suggested in the literature (κ = 0.3) for all sizes and times resulted in average relative deviations of 28–41% where over-prediction was dominant. When constant hygroscopicity was assumed, the relative deviation tended to increase with decreasing NCCN, which was accompanied by an increase of the sub-100 nm fraction. These results suggest that hygroscopicity information for particles of diameters smaller than 100 nm is crucial for more accurate predictions of NCCN. For confirmation when κ = 0.17, the average κ for sub-100 nm particles in this study, was applied for sub-100 nm and κ = 0.3 for all other sizes, the CCN closure became significantly better than that with κ = 0.3 for all sizes." @default.
- W2027831293 created "2016-06-24" @default.
- W2027831293 creator A5001826084 @default.
- W2027831293 creator A5055837398 @default.
- W2027831293 creator A5062228750 @default.
- W2027831293 creator A5070892078 @default.
- W2027831293 creator A5077457447 @default.
- W2027831293 creator A5082720332 @default.
- W2027831293 creator A5084340978 @default.
- W2027831293 date "2011-12-15" @default.
- W2027831293 modified "2023-10-01" @default.
- W2027831293 title "On aerosol hygroscopicity, cloud condensation nuclei (CCN) spectra and critical supersaturation measured at two remote islands of Korea between 2006 and 2009" @default.
- W2027831293 cites W1486724394 @default.
- W2027831293 cites W1504454824 @default.
- W2027831293 cites W1967698802 @default.
- W2027831293 cites W1967994013 @default.
- W2027831293 cites W1974910607 @default.
- W2027831293 cites W1981893554 @default.
- W2027831293 cites W1982895713 @default.
- W2027831293 cites W1983638346 @default.
- W2027831293 cites W1983905340 @default.
- W2027831293 cites W2005848352 @default.
- W2027831293 cites W2007841777 @default.
- W2027831293 cites W2010849470 @default.
- W2027831293 cites W2014741650 @default.
- W2027831293 cites W2027483555 @default.
- W2027831293 cites W2028888272 @default.
- W2027831293 cites W2032097538 @default.
- W2027831293 cites W2047688540 @default.
- W2027831293 cites W2053608860 @default.
- W2027831293 cites W2055217834 @default.
- W2027831293 cites W2067648302 @default.
- W2027831293 cites W2071920559 @default.
- W2027831293 cites W2072086690 @default.
- W2027831293 cites W2073115945 @default.
- W2027831293 cites W2073340285 @default.
- W2027831293 cites W2085774747 @default.
- W2027831293 cites W2095399183 @default.
- W2027831293 cites W2096049379 @default.
- W2027831293 cites W2099636727 @default.
- W2027831293 cites W2105149018 @default.
- W2027831293 cites W2105366385 @default.
- W2027831293 cites W2105463749 @default.
- W2027831293 cites W2106839556 @default.
- W2027831293 cites W2109358553 @default.
- W2027831293 cites W2113257326 @default.
- W2027831293 cites W2113673259 @default.
- W2027831293 cites W2116040867 @default.
- W2027831293 cites W2116900371 @default.
- W2027831293 cites W2117004231 @default.
- W2027831293 cites W2118295252 @default.
- W2027831293 cites W2127955512 @default.
- W2027831293 cites W2131160972 @default.
- W2027831293 cites W2133942622 @default.
- W2027831293 cites W2138548111 @default.
- W2027831293 cites W2143134463 @default.
- W2027831293 cites W2143290917 @default.
- W2027831293 cites W2151449194 @default.
- W2027831293 cites W2155733787 @default.
- W2027831293 cites W2159280057 @default.
- W2027831293 cites W2160862653 @default.
- W2027831293 cites W2164125317 @default.
- W2027831293 cites W2164713712 @default.
- W2027831293 cites W2167088427 @default.
- W2027831293 cites W2168309095 @default.
- W2027831293 cites W2169445895 @default.
- W2027831293 cites W2171180612 @default.
- W2027831293 cites W2171415361 @default.
- W2027831293 cites W4229657453 @default.
- W2027831293 cites W4229935748 @default.
- W2027831293 cites W4247726149 @default.
- W2027831293 cites W4253075194 @default.
- W2027831293 doi "https://doi.org/10.5194/acp-11-12627-2011" @default.
- W2027831293 hasPublicationYear "2011" @default.
- W2027831293 type Work @default.
- W2027831293 sameAs 2027831293 @default.
- W2027831293 citedByCount "36" @default.
- W2027831293 countsByYear W20278312932012 @default.
- W2027831293 countsByYear W20278312932013 @default.
- W2027831293 countsByYear W20278312932014 @default.
- W2027831293 countsByYear W20278312932015 @default.
- W2027831293 countsByYear W20278312932016 @default.
- W2027831293 countsByYear W20278312932017 @default.
- W2027831293 countsByYear W20278312932018 @default.
- W2027831293 countsByYear W20278312932019 @default.
- W2027831293 countsByYear W20278312932020 @default.
- W2027831293 countsByYear W20278312932021 @default.
- W2027831293 countsByYear W20278312932023 @default.
- W2027831293 crossrefType "journal-article" @default.
- W2027831293 hasAuthorship W2027831293A5001826084 @default.
- W2027831293 hasAuthorship W2027831293A5055837398 @default.
- W2027831293 hasAuthorship W2027831293A5062228750 @default.
- W2027831293 hasAuthorship W2027831293A5070892078 @default.
- W2027831293 hasAuthorship W2027831293A5077457447 @default.
- W2027831293 hasAuthorship W2027831293A5082720332 @default.
- W2027831293 hasAuthorship W2027831293A5084340978 @default.
- W2027831293 hasBestOaLocation W20278312931 @default.
- W2027831293 hasConcept C121332964 @default.