Matches in SemOpenAlex for { <https://semopenalex.org/work/W2027831395> ?p ?o ?g. }
- W2027831395 endingPage "063501" @default.
- W2027831395 startingPage "063501" @default.
- W2027831395 abstract "Potential formation in a bounded plasma system that contains electrons with a two-temperature velocity distribution and is terminated by a floating, electron emitting electrode (collector) is studied by a one-dimensional kinetic model. A method on how to determine the boundary conditions at the collector for the numerical solution of the Poisson equation is presented. The difference between the regular and the irregular numerical solutions of the Poisson equation is explained. The regular numerical solution of the Poisson equation fulfills the boundary conditions at the source and can be computed for any distance from the collector. The irregular solution does not fulfill the source boundary conditions and the computation breaks down at some distance from the collector. An excellent agreement of the values of the potential at the inflection point found from the numerical solution of the Poisson equation with the values predicted by the analytical model is obtained. Potential, electric field, and particle density profiles found by the numerical solution of the Poisson equation are compared to the profiles obtained with the particle in cell computer simulation. A very good quantitative agreement of the potential and electric field profiles is obtained. For certain values of the parameters the analytical model predicts three possible values of the potential at the inflection point. In such cases always only one of the corresponding numerical solutions of the Poisson equation is regular, while the other two are irregular. The regular numerical solution of the Poisson equation always corresponds to the solution of the model that predicts the largest ion flux to the collector." @default.
- W2027831395 created "2016-06-24" @default.
- W2027831395 creator A5045936348 @default.
- W2027831395 creator A5055950446 @default.
- W2027831395 creator A5061742877 @default.
- W2027831395 date "2008-06-01" @default.
- W2027831395 modified "2023-09-26" @default.
- W2027831395 title "Potential formation in a one-dimensional bounded plasma system containing a two-electron temperature plasma: Kinetic model and PIC simulation" @default.
- W2027831395 cites W1970944944 @default.
- W2027831395 cites W1970997285 @default.
- W2027831395 cites W1971202312 @default.
- W2027831395 cites W1973576169 @default.
- W2027831395 cites W1980855516 @default.
- W2027831395 cites W1986832702 @default.
- W2027831395 cites W1988534205 @default.
- W2027831395 cites W1994095312 @default.
- W2027831395 cites W1995018304 @default.
- W2027831395 cites W1998412953 @default.
- W2027831395 cites W2006792746 @default.
- W2027831395 cites W2009828324 @default.
- W2027831395 cites W2014236379 @default.
- W2027831395 cites W2015470292 @default.
- W2027831395 cites W2016158215 @default.
- W2027831395 cites W2017658141 @default.
- W2027831395 cites W2018467936 @default.
- W2027831395 cites W2021334318 @default.
- W2027831395 cites W2035915069 @default.
- W2027831395 cites W2040769349 @default.
- W2027831395 cites W2041508294 @default.
- W2027831395 cites W2041873962 @default.
- W2027831395 cites W2043348314 @default.
- W2027831395 cites W2045871773 @default.
- W2027831395 cites W2050314462 @default.
- W2027831395 cites W2056358965 @default.
- W2027831395 cites W2057775385 @default.
- W2027831395 cites W2059483149 @default.
- W2027831395 cites W2070357816 @default.
- W2027831395 cites W2073793879 @default.
- W2027831395 cites W2077218690 @default.
- W2027831395 cites W2081393019 @default.
- W2027831395 cites W2083469260 @default.
- W2027831395 cites W2083812845 @default.
- W2027831395 cites W2085264535 @default.
- W2027831395 cites W2089254012 @default.
- W2027831395 cites W2092610054 @default.
- W2027831395 cites W2100119919 @default.
- W2027831395 cites W2147319709 @default.
- W2027831395 cites W2150708103 @default.
- W2027831395 cites W2154372831 @default.
- W2027831395 cites W2163326767 @default.
- W2027831395 cites W2163567178 @default.
- W2027831395 cites W2169999994 @default.
- W2027831395 doi "https://doi.org/10.1063/1.2921793" @default.
- W2027831395 hasPublicationYear "2008" @default.
- W2027831395 type Work @default.
- W2027831395 sameAs 2027831395 @default.
- W2027831395 citedByCount "15" @default.
- W2027831395 countsByYear W20278313952012 @default.
- W2027831395 countsByYear W20278313952013 @default.
- W2027831395 countsByYear W20278313952015 @default.
- W2027831395 countsByYear W20278313952017 @default.
- W2027831395 countsByYear W20278313952019 @default.
- W2027831395 countsByYear W20278313952020 @default.
- W2027831395 countsByYear W20278313952021 @default.
- W2027831395 crossrefType "journal-article" @default.
- W2027831395 hasAuthorship W2027831395A5045936348 @default.
- W2027831395 hasAuthorship W2027831395A5055950446 @default.
- W2027831395 hasAuthorship W2027831395A5061742877 @default.
- W2027831395 hasConcept C100906024 @default.
- W2027831395 hasConcept C105795698 @default.
- W2027831395 hasConcept C121332964 @default.
- W2027831395 hasConcept C134306372 @default.
- W2027831395 hasConcept C147120987 @default.
- W2027831395 hasConcept C165801399 @default.
- W2027831395 hasConcept C182310444 @default.
- W2027831395 hasConcept C2524010 @default.
- W2027831395 hasConcept C33923547 @default.
- W2027831395 hasConcept C48753275 @default.
- W2027831395 hasConcept C58570533 @default.
- W2027831395 hasConcept C60799052 @default.
- W2027831395 hasConcept C62520636 @default.
- W2027831395 hasConcept C70615421 @default.
- W2027831395 hasConcept C74545648 @default.
- W2027831395 hasConcept C96716743 @default.
- W2027831395 hasConceptScore W2027831395C100906024 @default.
- W2027831395 hasConceptScore W2027831395C105795698 @default.
- W2027831395 hasConceptScore W2027831395C121332964 @default.
- W2027831395 hasConceptScore W2027831395C134306372 @default.
- W2027831395 hasConceptScore W2027831395C147120987 @default.
- W2027831395 hasConceptScore W2027831395C165801399 @default.
- W2027831395 hasConceptScore W2027831395C182310444 @default.
- W2027831395 hasConceptScore W2027831395C2524010 @default.
- W2027831395 hasConceptScore W2027831395C33923547 @default.
- W2027831395 hasConceptScore W2027831395C48753275 @default.
- W2027831395 hasConceptScore W2027831395C58570533 @default.
- W2027831395 hasConceptScore W2027831395C60799052 @default.
- W2027831395 hasConceptScore W2027831395C62520636 @default.
- W2027831395 hasConceptScore W2027831395C70615421 @default.