Matches in SemOpenAlex for { <https://semopenalex.org/work/W2027883383> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2027883383 abstract "Global solar radiation is need knowledge for solar energy system design. In this work, the artificial neural networks (ANN) were applied to estimate the daily global solar radiation in China. Eight-year meteorological data from ten weather stations, which located at very different locations and climate zone, was randomly split into training, validation and test set with the proportion of 2:1:1. Daily Meteorological data (sunshine duration, air temperature, rainfall, relative humidity, and atmospheric pressure), geographical parameters (latitude, longitude, and altitude), and day of year (DOY) were used in the input layer of the ANN models. Twelve combinations of input variables were considered and the performance of the models was evaluated. The ANN model with all input variables achieve the best results (R <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> = 0.932; RMSE = 1.915 MJ · m <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>-2</sup> · d <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>-1</sup> ). Compared to the most widely used regression model, Angstrom formula, ANN models are more accuracy. The ANN model was applied to forecast the daily solar radiation at 12 independent stations and the performance was fairly good (R <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> > 0.85; RMSE < 3.4 MJ · m <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>-2</sup> · d <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>-1</sup> ). Results indicated that the ANN models show promising in daily global solar radiation estimation at the places where the radiation data is missing or not available." @default.
- W2027883383 created "2016-06-24" @default.
- W2027883383 creator A5019822143 @default.
- W2027883383 creator A5020797395 @default.
- W2027883383 creator A5041341668 @default.
- W2027883383 creator A5085994998 @default.
- W2027883383 date "2010-01-01" @default.
- W2027883383 modified "2023-09-30" @default.
- W2027883383 title "Global Solar Radiation Modeling Using The Artificial Neural Network Technique" @default.
- W2027883383 cites W2010779124 @default.
- W2027883383 cites W2010951708 @default.
- W2027883383 cites W2025365831 @default.
- W2027883383 cites W2028281391 @default.
- W2027883383 cites W2035882531 @default.
- W2027883383 cites W2047450234 @default.
- W2027883383 cites W2055523044 @default.
- W2027883383 cites W2057781397 @default.
- W2027883383 cites W2061632729 @default.
- W2027883383 cites W2069673223 @default.
- W2027883383 cites W2088805342 @default.
- W2027883383 cites W2123468157 @default.
- W2027883383 doi "https://doi.org/10.1109/appeec.2010.5449467" @default.
- W2027883383 hasPublicationYear "2010" @default.
- W2027883383 type Work @default.
- W2027883383 sameAs 2027883383 @default.
- W2027883383 citedByCount "17" @default.
- W2027883383 countsByYear W20278833832012 @default.
- W2027883383 countsByYear W20278833832013 @default.
- W2027883383 countsByYear W20278833832014 @default.
- W2027883383 countsByYear W20278833832015 @default.
- W2027883383 countsByYear W20278833832016 @default.
- W2027883383 countsByYear W20278833832017 @default.
- W2027883383 countsByYear W20278833832019 @default.
- W2027883383 countsByYear W20278833832020 @default.
- W2027883383 crossrefType "proceedings-article" @default.
- W2027883383 hasAuthorship W2027883383A5019822143 @default.
- W2027883383 hasAuthorship W2027883383A5020797395 @default.
- W2027883383 hasAuthorship W2027883383A5041341668 @default.
- W2027883383 hasAuthorship W2027883383A5085994998 @default.
- W2027883383 hasConcept C121332964 @default.
- W2027883383 hasConcept C122523270 @default.
- W2027883383 hasConcept C1276947 @default.
- W2027883383 hasConcept C153294291 @default.
- W2027883383 hasConcept C154945302 @default.
- W2027883383 hasConcept C158960510 @default.
- W2027883383 hasConcept C197529216 @default.
- W2027883383 hasConcept C205649164 @default.
- W2027883383 hasConcept C2524010 @default.
- W2027883383 hasConcept C2780554747 @default.
- W2027883383 hasConcept C33923547 @default.
- W2027883383 hasConcept C39432304 @default.
- W2027883383 hasConcept C41008148 @default.
- W2027883383 hasConcept C50644808 @default.
- W2027883383 hasConcept C62649853 @default.
- W2027883383 hasConcept C6350597 @default.
- W2027883383 hasConceptScore W2027883383C121332964 @default.
- W2027883383 hasConceptScore W2027883383C122523270 @default.
- W2027883383 hasConceptScore W2027883383C1276947 @default.
- W2027883383 hasConceptScore W2027883383C153294291 @default.
- W2027883383 hasConceptScore W2027883383C154945302 @default.
- W2027883383 hasConceptScore W2027883383C158960510 @default.
- W2027883383 hasConceptScore W2027883383C197529216 @default.
- W2027883383 hasConceptScore W2027883383C205649164 @default.
- W2027883383 hasConceptScore W2027883383C2524010 @default.
- W2027883383 hasConceptScore W2027883383C2780554747 @default.
- W2027883383 hasConceptScore W2027883383C33923547 @default.
- W2027883383 hasConceptScore W2027883383C39432304 @default.
- W2027883383 hasConceptScore W2027883383C41008148 @default.
- W2027883383 hasConceptScore W2027883383C50644808 @default.
- W2027883383 hasConceptScore W2027883383C62649853 @default.
- W2027883383 hasConceptScore W2027883383C6350597 @default.
- W2027883383 hasLocation W20278833831 @default.
- W2027883383 hasOpenAccess W2027883383 @default.
- W2027883383 hasPrimaryLocation W20278833831 @default.
- W2027883383 hasRelatedWork W1985531835 @default.
- W2027883383 hasRelatedWork W2003666960 @default.
- W2027883383 hasRelatedWork W2006935698 @default.
- W2027883383 hasRelatedWork W2048268983 @default.
- W2027883383 hasRelatedWork W2056902919 @default.
- W2027883383 hasRelatedWork W2289143748 @default.
- W2027883383 hasRelatedWork W2353759442 @default.
- W2027883383 hasRelatedWork W2377234418 @default.
- W2027883383 hasRelatedWork W2382208033 @default.
- W2027883383 hasRelatedWork W14334249 @default.
- W2027883383 isParatext "false" @default.
- W2027883383 isRetracted "false" @default.
- W2027883383 magId "2027883383" @default.
- W2027883383 workType "article" @default.