Matches in SemOpenAlex for { <https://semopenalex.org/work/W2027909831> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2027909831 endingPage "404" @default.
- W2027909831 startingPage "389" @default.
- W2027909831 abstract "Abstract The advancement of medical technology has increased the amount of medical data. Data mining has become an essential tool for hospital management and medical research because it enables people to manage accumulated data and discern possible meaningful information from databases. Further medical research can thus use the important data. The current study compared 3 data mining methods, and attempted to identify the determining factors of breast cancer. The data were collected from a hospital in Taiwan and had been gathered between 2002 and 2010. Our study examined 1357 cases and 7 variables. The dataset was divided into 10 categories of training sets and testing sets. Three popular data mining algorithms (decision tree C5.0, SVM, and logistic regression) were used to predict the patients’ survival and death rates. The results showed that decision tree C5.0 outperformed both SVM and logistic regression. For training sets, the decision tree C5.0 achieved a classification accuracy of 95.8% with a sensitivity of 97.7% and a specificity of 94.7%. For testing sets, the decision tree C5.0 achieved a classification accuracy of 94.9% with a sensitivity of 95.7% and a specificity of 94.3%. The results suggested that decision tree C5.0 is the best model for prognosis in clinical practice. Our findings may provide a reference for doctors to identify new cases of breast cancer." @default.
- W2027909831 created "2016-06-24" @default.
- W2027909831 creator A5029803518 @default.
- W2027909831 creator A5082636554 @default.
- W2027909831 creator A5085985375 @default.
- W2027909831 date "2012-05-01" @default.
- W2027909831 modified "2023-09-25" @default.
- W2027909831 title "Three artificial intelligence techniques for finding the key factors in breast cancer" @default.
- W2027909831 cites W1508818163 @default.
- W2027909831 cites W1963497100 @default.
- W2027909831 cites W1966602182 @default.
- W2027909831 cites W1973448749 @default.
- W2027909831 cites W1983024255 @default.
- W2027909831 cites W1998560003 @default.
- W2027909831 cites W1999659160 @default.
- W2027909831 cites W2006704193 @default.
- W2027909831 cites W2017540033 @default.
- W2027909831 cites W2033626294 @default.
- W2027909831 cites W2034741255 @default.
- W2027909831 cites W2064320380 @default.
- W2027909831 cites W2069869097 @default.
- W2027909831 cites W2103592462 @default.
- W2027909831 cites W2142181701 @default.
- W2027909831 cites W2155236584 @default.
- W2027909831 cites W2164339440 @default.
- W2027909831 cites W2168404696 @default.
- W2027909831 doi "https://doi.org/10.1080/09720510.2012.10701632" @default.
- W2027909831 hasPublicationYear "2012" @default.
- W2027909831 type Work @default.
- W2027909831 sameAs 2027909831 @default.
- W2027909831 citedByCount "4" @default.
- W2027909831 countsByYear W20279098312014 @default.
- W2027909831 countsByYear W20279098312019 @default.
- W2027909831 countsByYear W20279098312020 @default.
- W2027909831 countsByYear W20279098312022 @default.
- W2027909831 crossrefType "journal-article" @default.
- W2027909831 hasAuthorship W2027909831A5029803518 @default.
- W2027909831 hasAuthorship W2027909831A5082636554 @default.
- W2027909831 hasAuthorship W2027909831A5085985375 @default.
- W2027909831 hasConcept C105795698 @default.
- W2027909831 hasConcept C119857082 @default.
- W2027909831 hasConcept C121608353 @default.
- W2027909831 hasConcept C12267149 @default.
- W2027909831 hasConcept C124101348 @default.
- W2027909831 hasConcept C126322002 @default.
- W2027909831 hasConcept C151956035 @default.
- W2027909831 hasConcept C154945302 @default.
- W2027909831 hasConcept C33923547 @default.
- W2027909831 hasConcept C41008148 @default.
- W2027909831 hasConcept C530470458 @default.
- W2027909831 hasConcept C5481197 @default.
- W2027909831 hasConcept C56289965 @default.
- W2027909831 hasConcept C61722155 @default.
- W2027909831 hasConcept C71924100 @default.
- W2027909831 hasConcept C84525736 @default.
- W2027909831 hasConceptScore W2027909831C105795698 @default.
- W2027909831 hasConceptScore W2027909831C119857082 @default.
- W2027909831 hasConceptScore W2027909831C121608353 @default.
- W2027909831 hasConceptScore W2027909831C12267149 @default.
- W2027909831 hasConceptScore W2027909831C124101348 @default.
- W2027909831 hasConceptScore W2027909831C126322002 @default.
- W2027909831 hasConceptScore W2027909831C151956035 @default.
- W2027909831 hasConceptScore W2027909831C154945302 @default.
- W2027909831 hasConceptScore W2027909831C33923547 @default.
- W2027909831 hasConceptScore W2027909831C41008148 @default.
- W2027909831 hasConceptScore W2027909831C530470458 @default.
- W2027909831 hasConceptScore W2027909831C5481197 @default.
- W2027909831 hasConceptScore W2027909831C56289965 @default.
- W2027909831 hasConceptScore W2027909831C61722155 @default.
- W2027909831 hasConceptScore W2027909831C71924100 @default.
- W2027909831 hasConceptScore W2027909831C84525736 @default.
- W2027909831 hasIssue "2-3" @default.
- W2027909831 hasLocation W20279098311 @default.
- W2027909831 hasOpenAccess W2027909831 @default.
- W2027909831 hasPrimaryLocation W20279098311 @default.
- W2027909831 hasRelatedWork W2015559330 @default.
- W2027909831 hasRelatedWork W2315600111 @default.
- W2027909831 hasRelatedWork W2338994166 @default.
- W2027909831 hasRelatedWork W2526679259 @default.
- W2027909831 hasRelatedWork W2964553505 @default.
- W2027909831 hasRelatedWork W4239706975 @default.
- W2027909831 hasRelatedWork W4312811709 @default.
- W2027909831 hasRelatedWork W4318606143 @default.
- W2027909831 hasRelatedWork W4367335871 @default.
- W2027909831 hasRelatedWork W4367335967 @default.
- W2027909831 hasVolume "15" @default.
- W2027909831 isParatext "false" @default.
- W2027909831 isRetracted "false" @default.
- W2027909831 magId "2027909831" @default.
- W2027909831 workType "article" @default.