Matches in SemOpenAlex for { <https://semopenalex.org/work/W2028016199> ?p ?o ?g. }
- W2028016199 abstract "A deterministic atmospheric spectral radiative transfer model, that uses comprehensive climatological data, is developed to compute the global distribution of mean monthly clear-sky total direct aerosol radiative forcing in the ultraviolet (UV) and visible, between 0.2–0.85 μm, at the top of the atmosphere (TOA), within the atmosphere and at the Earth's surface for winter and summer conditions. The aerosol data were taken from the Global Aerosol Data Set (GADS), given for various fixed relative humidity values and for 11 wavelengths within the UV–visible range, both for natural and anthropogenic aerosols. We first derive global climatologies of extinction aerosol optical thickness (AOT), single-scattering albedo (ω aer ) and asymmetry factor ( g aer ), for actual relative humidity values within the aerosol layer, based on the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) Reanalysis Project and the Tiros Operational Vertical Sounder (TOVS) datasets. We include the global distribution of cloud cover using the D2 data from the International Satellite Cloud Climatology Project (ISCCP), to define the clear-sky fraction at the pixel level for each month. Supplementary 10-yr climatological data for surface and atmospheric parameters were taken from NCEP/NCAR, ISCCP-D2 and TOVS. Our present analysis allows the aerosol radiative properties and forcings to vary with space, time and wavelength. The computed mean annual global AOT, ω aer and g aer values are found to be 0.08, 0.96 and 0.73, respectively, at 0.5 μm. On a mean monthly 2.5° pixel resolution, aerosols are found to decrease significantly the downward and the absorbed solar radiation at the surface, by up to 28 and 23 W m −2 , respectively, producing a surface cooling at all latitudes in both winter and summer. Aerosols are found to generally increase the outgoing solar radiation at TOA (planetary cooling) while they increase the solar atmospheric absorption (atmospheric warming). However, the model results indicate that significant planetary warming, by up to 5 W m −2 , can occur regionally, such as over desert areas, due to strong aerosol absorption. A smaller planetary warming (by up to 2 W m −2 ) is also found over highly reflecting ice- or snow-covered areas, such as Antarctica and Greenland, as well as over Eastern Europe, Siberia and North America. In general, the aerosol-induced surface cooling exceeds the induced atmospheric warming, except for regions characterized by strong aerosol absorption (e.g. deserts). On a mean annual global basis, natural plus anthropogenic aerosols are found to cool the Earth by 0.6 W m −2 (they increase the planetary albedo by 0.28%), to heat the atmosphere by 0.8 W m −2 , while they decrease the downward and net surface solar radiation (surface cooling) by about 1.9 and 1.4 W m −2 . DOI: 10.1111/j.1600-0889.2004.00085.x" @default.
- W2028016199 created "2016-06-24" @default.
- W2028016199 creator A5073287165 @default.
- W2028016199 creator A5075509109 @default.
- W2028016199 creator A5080186014 @default.
- W2028016199 date "2004-01-01" @default.
- W2028016199 modified "2023-10-16" @default.
- W2028016199 title "Global distribution of aerosol direct radiative forcing in the ultraviolet and visible arising under clear skies" @default.
- W2028016199 cites W150700223 @default.
- W2028016199 cites W1519295021 @default.
- W2028016199 cites W1966599239 @default.
- W2028016199 cites W1975196041 @default.
- W2028016199 cites W1976329464 @default.
- W2028016199 cites W1980097032 @default.
- W2028016199 cites W1981719480 @default.
- W2028016199 cites W1983299260 @default.
- W2028016199 cites W1983569843 @default.
- W2028016199 cites W1986006395 @default.
- W2028016199 cites W1990970795 @default.
- W2028016199 cites W1991146308 @default.
- W2028016199 cites W1994699491 @default.
- W2028016199 cites W1996028250 @default.
- W2028016199 cites W1996919941 @default.
- W2028016199 cites W2003321021 @default.
- W2028016199 cites W2004807061 @default.
- W2028016199 cites W2005542744 @default.
- W2028016199 cites W2009110968 @default.
- W2028016199 cites W2010900838 @default.
- W2028016199 cites W2016241302 @default.
- W2028016199 cites W2018933609 @default.
- W2028016199 cites W2019153789 @default.
- W2028016199 cites W2020219874 @default.
- W2028016199 cites W2025809975 @default.
- W2028016199 cites W2028620224 @default.
- W2028016199 cites W2035000783 @default.
- W2028016199 cites W2036387729 @default.
- W2028016199 cites W2043253162 @default.
- W2028016199 cites W2045465689 @default.
- W2028016199 cites W2045470555 @default.
- W2028016199 cites W2046136706 @default.
- W2028016199 cites W2047167353 @default.
- W2028016199 cites W2055178836 @default.
- W2028016199 cites W2055353954 @default.
- W2028016199 cites W2055793075 @default.
- W2028016199 cites W2063087184 @default.
- W2028016199 cites W2065515785 @default.
- W2028016199 cites W2067131914 @default.
- W2028016199 cites W2069962980 @default.
- W2028016199 cites W2070298165 @default.
- W2028016199 cites W2073383293 @default.
- W2028016199 cites W2089210367 @default.
- W2028016199 cites W2096995570 @default.
- W2028016199 cites W2098010200 @default.
- W2028016199 cites W2098585742 @default.
- W2028016199 cites W2108562317 @default.
- W2028016199 cites W2109979560 @default.
- W2028016199 cites W2119216702 @default.
- W2028016199 cites W2119744638 @default.
- W2028016199 cites W2127628180 @default.
- W2028016199 cites W2128299973 @default.
- W2028016199 cites W2136408596 @default.
- W2028016199 cites W2139448047 @default.
- W2028016199 cites W2140274561 @default.
- W2028016199 cites W2158426942 @default.
- W2028016199 cites W2168407306 @default.
- W2028016199 cites W2172525329 @default.
- W2028016199 cites W2174313220 @default.
- W2028016199 cites W2175472858 @default.
- W2028016199 cites W2175786461 @default.
- W2028016199 cites W2179777337 @default.
- W2028016199 cites W4251079263 @default.
- W2028016199 cites W4253244148 @default.
- W2028016199 cites W77797730 @default.
- W2028016199 doi "https://doi.org/10.3402/tellusb.v56i1.16400" @default.
- W2028016199 hasPublicationYear "2004" @default.
- W2028016199 type Work @default.
- W2028016199 sameAs 2028016199 @default.
- W2028016199 citedByCount "12" @default.
- W2028016199 countsByYear W20280161992016 @default.
- W2028016199 countsByYear W20280161992017 @default.
- W2028016199 countsByYear W20280161992018 @default.
- W2028016199 countsByYear W20280161992020 @default.
- W2028016199 countsByYear W20280161992021 @default.
- W2028016199 countsByYear W20280161992022 @default.
- W2028016199 countsByYear W20280161992023 @default.
- W2028016199 crossrefType "journal-article" @default.
- W2028016199 hasAuthorship W2028016199A5073287165 @default.
- W2028016199 hasAuthorship W2028016199A5075509109 @default.
- W2028016199 hasAuthorship W2028016199A5080186014 @default.
- W2028016199 hasConcept C111919701 @default.
- W2028016199 hasConcept C121332964 @default.
- W2028016199 hasConcept C127313418 @default.
- W2028016199 hasConcept C1276947 @default.
- W2028016199 hasConcept C142362112 @default.
- W2028016199 hasConcept C144402933 @default.
- W2028016199 hasConcept C153294291 @default.
- W2028016199 hasConcept C19269812 @default.
- W2028016199 hasConcept C195886398 @default.
- W2028016199 hasConcept C205649164 @default.
- W2028016199 hasConcept C206887242 @default.