Matches in SemOpenAlex for { <https://semopenalex.org/work/W2028078785> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2028078785 endingPage "012017" @default.
- W2028078785 startingPage "012017" @default.
- W2028078785 abstract "In this paper, we show that neural networks can be used to uncover the non-linearity that exists in the financial data. First, we follow a traditional approach by analysing the deterministic/stochastic characteristics of the Portuguese stock market data and some typical features are studied, like the Hurst exponents, among others. We also simulate a BDS test to investigate nonlinearities and the results are as expected: the financial time series do not exhibit linear dependence. Secondly, we trained four types of neural networks for the stock markets and used the models to make forecasts. The artificial neural networks were obtained using a three-layer feed-forward topology and the back-propagation learning algorithm. The quite large number of parameters that must be selected to develop a neural network forecasting model involves some trial and as a consequence the error is not small enough. In order to improve this we use a nonlinear optimization algorithm to minimize the error. Finally, the output of the 4 models is quite similar, leading to a qualitative forecast that we compare with the results of the application of k-nearest-neighbor for the same time series." @default.
- W2028078785 created "2016-06-24" @default.
- W2028078785 creator A5023817716 @default.
- W2028078785 creator A5048061782 @default.
- W2028078785 creator A5062314661 @default.
- W2028078785 date "2010-04-01" @default.
- W2028078785 modified "2023-09-27" @default.
- W2028078785 title "Forecasting the portuguese stock market time series by using artificial neural networks" @default.
- W2028078785 cites W1782977420 @default.
- W2028078785 cites W1963732168 @default.
- W2028078785 cites W1997127946 @default.
- W2028078785 cites W2005346797 @default.
- W2028078785 cites W2034099719 @default.
- W2028078785 cites W2117039450 @default.
- W2028078785 cites W2117829824 @default.
- W2028078785 cites W2341760625 @default.
- W2028078785 cites W353957520 @default.
- W2028078785 doi "https://doi.org/10.1088/1742-6596/221/1/012017" @default.
- W2028078785 hasPublicationYear "2010" @default.
- W2028078785 type Work @default.
- W2028078785 sameAs 2028078785 @default.
- W2028078785 citedByCount "2" @default.
- W2028078785 countsByYear W20280787852023 @default.
- W2028078785 crossrefType "journal-article" @default.
- W2028078785 hasAuthorship W2028078785A5023817716 @default.
- W2028078785 hasAuthorship W2028078785A5048061782 @default.
- W2028078785 hasAuthorship W2028078785A5062314661 @default.
- W2028078785 hasBestOaLocation W20280787851 @default.
- W2028078785 hasConcept C106159729 @default.
- W2028078785 hasConcept C119857082 @default.
- W2028078785 hasConcept C127313418 @default.
- W2028078785 hasConcept C127413603 @default.
- W2028078785 hasConcept C138885662 @default.
- W2028078785 hasConcept C143724316 @default.
- W2028078785 hasConcept C149782125 @default.
- W2028078785 hasConcept C151406439 @default.
- W2028078785 hasConcept C151730666 @default.
- W2028078785 hasConcept C154945302 @default.
- W2028078785 hasConcept C162324750 @default.
- W2028078785 hasConcept C166957645 @default.
- W2028078785 hasConcept C204036174 @default.
- W2028078785 hasConcept C205649164 @default.
- W2028078785 hasConcept C2779343474 @default.
- W2028078785 hasConcept C2780299701 @default.
- W2028078785 hasConcept C35219183 @default.
- W2028078785 hasConcept C41008148 @default.
- W2028078785 hasConcept C41895202 @default.
- W2028078785 hasConcept C50644808 @default.
- W2028078785 hasConcept C78519656 @default.
- W2028078785 hasConceptScore W2028078785C106159729 @default.
- W2028078785 hasConceptScore W2028078785C119857082 @default.
- W2028078785 hasConceptScore W2028078785C127313418 @default.
- W2028078785 hasConceptScore W2028078785C127413603 @default.
- W2028078785 hasConceptScore W2028078785C138885662 @default.
- W2028078785 hasConceptScore W2028078785C143724316 @default.
- W2028078785 hasConceptScore W2028078785C149782125 @default.
- W2028078785 hasConceptScore W2028078785C151406439 @default.
- W2028078785 hasConceptScore W2028078785C151730666 @default.
- W2028078785 hasConceptScore W2028078785C154945302 @default.
- W2028078785 hasConceptScore W2028078785C162324750 @default.
- W2028078785 hasConceptScore W2028078785C166957645 @default.
- W2028078785 hasConceptScore W2028078785C204036174 @default.
- W2028078785 hasConceptScore W2028078785C205649164 @default.
- W2028078785 hasConceptScore W2028078785C2779343474 @default.
- W2028078785 hasConceptScore W2028078785C2780299701 @default.
- W2028078785 hasConceptScore W2028078785C35219183 @default.
- W2028078785 hasConceptScore W2028078785C41008148 @default.
- W2028078785 hasConceptScore W2028078785C41895202 @default.
- W2028078785 hasConceptScore W2028078785C50644808 @default.
- W2028078785 hasConceptScore W2028078785C78519656 @default.
- W2028078785 hasLocation W20280787851 @default.
- W2028078785 hasLocation W20280787852 @default.
- W2028078785 hasOpenAccess W2028078785 @default.
- W2028078785 hasPrimaryLocation W20280787851 @default.
- W2028078785 hasRelatedWork W1963569934 @default.
- W2028078785 hasRelatedWork W2140339747 @default.
- W2028078785 hasRelatedWork W2242271381 @default.
- W2028078785 hasRelatedWork W2289642014 @default.
- W2028078785 hasRelatedWork W2357809648 @default.
- W2028078785 hasRelatedWork W2378555542 @default.
- W2028078785 hasRelatedWork W2381421930 @default.
- W2028078785 hasRelatedWork W2906471315 @default.
- W2028078785 hasRelatedWork W2990514669 @default.
- W2028078785 hasRelatedWork W2393723963 @default.
- W2028078785 hasVolume "221" @default.
- W2028078785 isParatext "false" @default.
- W2028078785 isRetracted "false" @default.
- W2028078785 magId "2028078785" @default.
- W2028078785 workType "article" @default.