Matches in SemOpenAlex for { <https://semopenalex.org/work/W2028148133> ?p ?o ?g. }
- W2028148133 endingPage "197" @default.
- W2028148133 startingPage "177" @default.
- W2028148133 abstract "The data measurement process for many time series is complex with an extensive set of revisions leading to multiple vintages of the same variable. How should the data measurement process be taken into account in the modelling and forecasting process? For example, the accuracy of the forecasts depends essentially on which vintage of data is used to construct the model and which vintage is used to evaluate the forecasts. Using historical series to estimate the model but more recent data to evaluate the forecasts, can give rise to equilibrium mean shifts and forecast failure. Combining the data measurement process and the data generation process allows consistency of approach in model building, evaluation and forecasting. The case of nonstationary data is considered here with, in the most general situation, multiple vintages on several variables. Simpler systems are used to motivate the ideas, which are illustrated with data for US income and consumption." @default.
- W2028148133 created "2016-06-24" @default.
- W2028148133 creator A5067819934 @default.
- W2028148133 date "2003-04-01" @default.
- W2028148133 modified "2023-09-26" @default.
- W2028148133 title "Exploiting information in vintages of time-series data" @default.
- W2028148133 cites W1507124672 @default.
- W2028148133 cites W1523413278 @default.
- W2028148133 cites W1963912781 @default.
- W2028148133 cites W1972283915 @default.
- W2028148133 cites W1982784846 @default.
- W2028148133 cites W1983118048 @default.
- W2028148133 cites W1985321571 @default.
- W2028148133 cites W1990218741 @default.
- W2028148133 cites W1995205965 @default.
- W2028148133 cites W2026144762 @default.
- W2028148133 cites W2034056585 @default.
- W2028148133 cites W2038532793 @default.
- W2028148133 cites W2047788560 @default.
- W2028148133 cites W2059296938 @default.
- W2028148133 cites W2060210686 @default.
- W2028148133 cites W2078427946 @default.
- W2028148133 cites W2093813869 @default.
- W2028148133 cites W2100351308 @default.
- W2028148133 cites W2108066104 @default.
- W2028148133 cites W2134152354 @default.
- W2028148133 cites W2135589060 @default.
- W2028148133 cites W2153354283 @default.
- W2028148133 cites W2248040980 @default.
- W2028148133 cites W2312232638 @default.
- W2028148133 cites W2317452912 @default.
- W2028148133 cites W2736567095 @default.
- W2028148133 cites W3122281704 @default.
- W2028148133 cites W3123002921 @default.
- W2028148133 cites W38681339 @default.
- W2028148133 cites W4230939740 @default.
- W2028148133 cites W4232689595 @default.
- W2028148133 cites W4243128559 @default.
- W2028148133 cites W4247650707 @default.
- W2028148133 cites W4249160806 @default.
- W2028148133 cites W1764225484 @default.
- W2028148133 doi "https://doi.org/10.1016/s0169-2070(01)00145-5" @default.
- W2028148133 hasPublicationYear "2003" @default.
- W2028148133 type Work @default.
- W2028148133 sameAs 2028148133 @default.
- W2028148133 citedByCount "41" @default.
- W2028148133 countsByYear W20281481332012 @default.
- W2028148133 countsByYear W20281481332013 @default.
- W2028148133 countsByYear W20281481332015 @default.
- W2028148133 countsByYear W20281481332017 @default.
- W2028148133 countsByYear W20281481332019 @default.
- W2028148133 crossrefType "journal-article" @default.
- W2028148133 hasAuthorship W2028148133A5067819934 @default.
- W2028148133 hasConcept C111919701 @default.
- W2028148133 hasConcept C119857082 @default.
- W2028148133 hasConcept C123890144 @default.
- W2028148133 hasConcept C124101348 @default.
- W2028148133 hasConcept C134306372 @default.
- W2028148133 hasConcept C143724316 @default.
- W2028148133 hasConcept C149782125 @default.
- W2028148133 hasConcept C151406439 @default.
- W2028148133 hasConcept C151730666 @default.
- W2028148133 hasConcept C154945302 @default.
- W2028148133 hasConcept C162324750 @default.
- W2028148133 hasConcept C166957645 @default.
- W2028148133 hasConcept C177264268 @default.
- W2028148133 hasConcept C182365436 @default.
- W2028148133 hasConcept C199360897 @default.
- W2028148133 hasConcept C205649164 @default.
- W2028148133 hasConcept C2776436953 @default.
- W2028148133 hasConcept C2780801425 @default.
- W2028148133 hasConcept C33923547 @default.
- W2028148133 hasConcept C41008148 @default.
- W2028148133 hasConcept C58489278 @default.
- W2028148133 hasConcept C86803240 @default.
- W2028148133 hasConcept C98045186 @default.
- W2028148133 hasConceptScore W2028148133C111919701 @default.
- W2028148133 hasConceptScore W2028148133C119857082 @default.
- W2028148133 hasConceptScore W2028148133C123890144 @default.
- W2028148133 hasConceptScore W2028148133C124101348 @default.
- W2028148133 hasConceptScore W2028148133C134306372 @default.
- W2028148133 hasConceptScore W2028148133C143724316 @default.
- W2028148133 hasConceptScore W2028148133C149782125 @default.
- W2028148133 hasConceptScore W2028148133C151406439 @default.
- W2028148133 hasConceptScore W2028148133C151730666 @default.
- W2028148133 hasConceptScore W2028148133C154945302 @default.
- W2028148133 hasConceptScore W2028148133C162324750 @default.
- W2028148133 hasConceptScore W2028148133C166957645 @default.
- W2028148133 hasConceptScore W2028148133C177264268 @default.
- W2028148133 hasConceptScore W2028148133C182365436 @default.
- W2028148133 hasConceptScore W2028148133C199360897 @default.
- W2028148133 hasConceptScore W2028148133C205649164 @default.
- W2028148133 hasConceptScore W2028148133C2776436953 @default.
- W2028148133 hasConceptScore W2028148133C2780801425 @default.
- W2028148133 hasConceptScore W2028148133C33923547 @default.
- W2028148133 hasConceptScore W2028148133C41008148 @default.
- W2028148133 hasConceptScore W2028148133C58489278 @default.
- W2028148133 hasConceptScore W2028148133C86803240 @default.