Matches in SemOpenAlex for { <https://semopenalex.org/work/W2028172011> ?p ?o ?g. }
- W2028172011 endingPage "2706" @default.
- W2028172011 startingPage "2689" @default.
- W2028172011 abstract "Frequency-domain electromagnetic induction (EMI) sensors can measure object-specific signatures that can be used to discriminate landmines from harmless clutter. In a model-based signal processing paradigm, the object signatures can often be decomposed into a weighted sum of parameterized basis functions, such as the discrete spectrum of relaxation frequencies (DSRF), where the basis functions are intrinsic to the object under consideration and the associated weights are a function of the target-sensor orientation. The basis function parameters can then be used as features for classifying the target. One of the challenges associated with effectively utilizing a model-based signal processing paradigm such as this is determining the correct model order for the measured data, as the number of basis functions containing fundamental information regarding the target under consideration is not known a priori. In this paper, sparse Bayesian relevance vector machine (RVM) regression is applied to simultaneously determine both the number of parameterized basis functions and their relative contributions to the measured signal assuming a DSRF signal model. The target is then classified utilizing the basis function parameters as features within a statistical classifier. Results for data measured with a prototype frequency-domain EMI sensor at a standardized test site are presented, and indicate that RVM regression followed by distance-based statistical classifiers utilizing the resulting model-based features provides an effective approach for classifying and identifying landmine targets." @default.
- W2028172011 created "2016-06-24" @default.
- W2028172011 creator A5004578492 @default.
- W2028172011 creator A5022565924 @default.
- W2028172011 creator A5050921303 @default.
- W2028172011 creator A5063514515 @default.
- W2028172011 creator A5078095474 @default.
- W2028172011 date "2013-05-01" @default.
- W2028172011 modified "2023-10-06" @default.
- W2028172011 title "Target Classification and Identification Using Sparse Model Representations of Frequency-Domain Electromagnetic Induction Sensor Data" @default.
- W2028172011 cites W1568633347 @default.
- W2028172011 cites W1627712645 @default.
- W2028172011 cites W1648445109 @default.
- W2028172011 cites W1733938408 @default.
- W2028172011 cites W1967318096 @default.
- W2028172011 cites W1969696684 @default.
- W2028172011 cites W1972660393 @default.
- W2028172011 cites W1975315360 @default.
- W2028172011 cites W1981699795 @default.
- W2028172011 cites W1982546331 @default.
- W2028172011 cites W1986559439 @default.
- W2028172011 cites W1986800683 @default.
- W2028172011 cites W1996012703 @default.
- W2028172011 cites W2006432092 @default.
- W2028172011 cites W2013129205 @default.
- W2028172011 cites W2017553894 @default.
- W2028172011 cites W2018003112 @default.
- W2028172011 cites W2029831127 @default.
- W2028172011 cites W2039862052 @default.
- W2028172011 cites W2041920243 @default.
- W2028172011 cites W2048305616 @default.
- W2028172011 cites W2053513171 @default.
- W2028172011 cites W2058066241 @default.
- W2028172011 cites W2060647575 @default.
- W2028172011 cites W2068660072 @default.
- W2028172011 cites W2072821222 @default.
- W2028172011 cites W2078086156 @default.
- W2028172011 cites W2085774109 @default.
- W2028172011 cites W2096334333 @default.
- W2028172011 cites W2098085665 @default.
- W2028172011 cites W2098370645 @default.
- W2028172011 cites W2098890195 @default.
- W2028172011 cites W2098987141 @default.
- W2028172011 cites W2100338124 @default.
- W2028172011 cites W2101468458 @default.
- W2028172011 cites W2101511073 @default.
- W2028172011 cites W2105031693 @default.
- W2028172011 cites W2105330228 @default.
- W2028172011 cites W2107699276 @default.
- W2028172011 cites W2107820823 @default.
- W2028172011 cites W2111691589 @default.
- W2028172011 cites W2112369169 @default.
- W2028172011 cites W2115895479 @default.
- W2028172011 cites W2116007095 @default.
- W2028172011 cites W2116310205 @default.
- W2028172011 cites W2116329950 @default.
- W2028172011 cites W2116922744 @default.
- W2028172011 cites W2117836138 @default.
- W2028172011 cites W2118338900 @default.
- W2028172011 cites W2119305290 @default.
- W2028172011 cites W2119382389 @default.
- W2028172011 cites W2124098304 @default.
- W2028172011 cites W2124701600 @default.
- W2028172011 cites W2125101937 @default.
- W2028172011 cites W2130824877 @default.
- W2028172011 cites W2132733716 @default.
- W2028172011 cites W2132827306 @default.
- W2028172011 cites W2134969878 @default.
- W2028172011 cites W2135338311 @default.
- W2028172011 cites W2135809864 @default.
- W2028172011 cites W2136986626 @default.
- W2028172011 cites W2137590982 @default.
- W2028172011 cites W2139310667 @default.
- W2028172011 cites W2140232441 @default.
- W2028172011 cites W2140948167 @default.
- W2028172011 cites W2141639776 @default.
- W2028172011 cites W2145464429 @default.
- W2028172011 cites W2146332736 @default.
- W2028172011 cites W2147258447 @default.
- W2028172011 cites W2149662723 @default.
- W2028172011 cites W2152710409 @default.
- W2028172011 cites W2154846205 @default.
- W2028172011 cites W2155333179 @default.
- W2028172011 cites W2155536146 @default.
- W2028172011 cites W2156558008 @default.
- W2028172011 cites W2157404636 @default.
- W2028172011 cites W2157445444 @default.
- W2028172011 cites W2158545620 @default.
- W2028172011 cites W2158819216 @default.
- W2028172011 cites W2162784354 @default.
- W2028172011 cites W2164179744 @default.
- W2028172011 cites W2166508010 @default.
- W2028172011 cites W2168302823 @default.
- W2028172011 cites W2168953909 @default.
- W2028172011 cites W2171134334 @default.
- W2028172011 cites W2319065722 @default.
- W2028172011 cites W2770241054 @default.
- W2028172011 cites W4239812475 @default.