Matches in SemOpenAlex for { <https://semopenalex.org/work/W2028233028> ?p ?o ?g. }
- W2028233028 endingPage "224" @default.
- W2028233028 startingPage "211" @default.
- W2028233028 abstract "The Weibull distribution is one of the most widely used lifetime distributions in reliability engineering and the estimation of the parameters of this distribution is essential in the most real applications. Maximum likelihood (ML) estimation is a common method, which is usually used to elaborate on the parameter estimation. The working principle of ML estimation method based on maximizing the established likelihood function and maximizing this function formed for the parameter estimation of a three-parameter (3-p) Weibull distribution is a quite challenging problem. In this paper, this problem have been briefly discussed and an effective approach based on the differential evolution (DE) algorithm operators is proposed in order to enhance the estimation accuracy with less system resources. Three explanatory numerical examples are given to show that DE approach which requires significantly less CPU time and exhibits a rapid convergence to the maximum value of the likelihood function in less iterations, provides accurate estimates and is satisfactory for the parameter estimation of the 3-p Weibull distribution." @default.
- W2028233028 created "2016-06-24" @default.
- W2028233028 creator A5004963078 @default.
- W2028233028 creator A5015081142 @default.
- W2028233028 creator A5024327260 @default.
- W2028233028 date "2015-01-01" @default.
- W2028233028 modified "2023-09-24" @default.
- W2028233028 title "Estimating the parameters of 3-p Weibull distribution through differential evolution" @default.
- W2028233028 cites W1565442263 @default.
- W2028233028 cites W1595159159 @default.
- W2028233028 cites W1975172421 @default.
- W2028233028 cites W1976004269 @default.
- W2028233028 cites W1976108776 @default.
- W2028233028 cites W1976741468 @default.
- W2028233028 cites W1982860391 @default.
- W2028233028 cites W1983280532 @default.
- W2028233028 cites W1987790292 @default.
- W2028233028 cites W1988504698 @default.
- W2028233028 cites W1990155951 @default.
- W2028233028 cites W1995024710 @default.
- W2028233028 cites W2016245653 @default.
- W2028233028 cites W2018299061 @default.
- W2028233028 cites W2025129251 @default.
- W2028233028 cites W2025384628 @default.
- W2028233028 cites W2026789128 @default.
- W2028233028 cites W2028484327 @default.
- W2028233028 cites W2052247554 @default.
- W2028233028 cites W2069837130 @default.
- W2028233028 cites W2071887906 @default.
- W2028233028 cites W2072173190 @default.
- W2028233028 cites W2073157632 @default.
- W2028233028 cites W2080089060 @default.
- W2028233028 cites W2083748526 @default.
- W2028233028 cites W2085211716 @default.
- W2028233028 cites W2100707489 @default.
- W2028233028 cites W2105114377 @default.
- W2028233028 cites W2112491126 @default.
- W2028233028 cites W2122133626 @default.
- W2028233028 cites W2125332715 @default.
- W2028233028 cites W2138810473 @default.
- W2028233028 cites W2144094343 @default.
- W2028233028 cites W2150376629 @default.
- W2028233028 cites W2306772466 @default.
- W2028233028 doi "https://doi.org/10.1016/j.amc.2014.10.127" @default.
- W2028233028 hasPublicationYear "2015" @default.
- W2028233028 type Work @default.
- W2028233028 sameAs 2028233028 @default.
- W2028233028 citedByCount "12" @default.
- W2028233028 countsByYear W20282330282015 @default.
- W2028233028 countsByYear W20282330282018 @default.
- W2028233028 countsByYear W20282330282019 @default.
- W2028233028 countsByYear W20282330282020 @default.
- W2028233028 countsByYear W20282330282021 @default.
- W2028233028 countsByYear W20282330282022 @default.
- W2028233028 crossrefType "journal-article" @default.
- W2028233028 hasAuthorship W2028233028A5004963078 @default.
- W2028233028 hasAuthorship W2028233028A5015081142 @default.
- W2028233028 hasAuthorship W2028233028A5024327260 @default.
- W2028233028 hasConcept C105795698 @default.
- W2028233028 hasConcept C110121322 @default.
- W2028233028 hasConcept C121332964 @default.
- W2028233028 hasConcept C126255220 @default.
- W2028233028 hasConcept C127413603 @default.
- W2028233028 hasConcept C130630143 @default.
- W2028233028 hasConcept C134306372 @default.
- W2028233028 hasConcept C14036430 @default.
- W2028233028 hasConcept C162324750 @default.
- W2028233028 hasConcept C163258240 @default.
- W2028233028 hasConcept C167928553 @default.
- W2028233028 hasConcept C173291955 @default.
- W2028233028 hasConcept C199435849 @default.
- W2028233028 hasConcept C201995342 @default.
- W2028233028 hasConcept C2777303404 @default.
- W2028233028 hasConcept C28826006 @default.
- W2028233028 hasConcept C33923547 @default.
- W2028233028 hasConcept C43214815 @default.
- W2028233028 hasConcept C49781872 @default.
- W2028233028 hasConcept C50522688 @default.
- W2028233028 hasConcept C62520636 @default.
- W2028233028 hasConcept C78458016 @default.
- W2028233028 hasConcept C86803240 @default.
- W2028233028 hasConcept C89106044 @default.
- W2028233028 hasConcept C95770405 @default.
- W2028233028 hasConcept C96250715 @default.
- W2028233028 hasConceptScore W2028233028C105795698 @default.
- W2028233028 hasConceptScore W2028233028C110121322 @default.
- W2028233028 hasConceptScore W2028233028C121332964 @default.
- W2028233028 hasConceptScore W2028233028C126255220 @default.
- W2028233028 hasConceptScore W2028233028C127413603 @default.
- W2028233028 hasConceptScore W2028233028C130630143 @default.
- W2028233028 hasConceptScore W2028233028C134306372 @default.
- W2028233028 hasConceptScore W2028233028C14036430 @default.
- W2028233028 hasConceptScore W2028233028C162324750 @default.
- W2028233028 hasConceptScore W2028233028C163258240 @default.
- W2028233028 hasConceptScore W2028233028C167928553 @default.
- W2028233028 hasConceptScore W2028233028C173291955 @default.
- W2028233028 hasConceptScore W2028233028C199435849 @default.
- W2028233028 hasConceptScore W2028233028C201995342 @default.