Matches in SemOpenAlex for { <https://semopenalex.org/work/W2028261619> ?p ?o ?g. }
- W2028261619 endingPage "432" @default.
- W2028261619 startingPage "420" @default.
- W2028261619 abstract "Expanding global and regional markets are driving the conversion of traditional subsistence agricultural and occupied non-agricultural lands to commercial-agricultural purposes. In many parts of mainland Southeast Asia rubber plantations are expanding rapidly into areas where the crop was not historically found. Over the last several decades more than one million hectares of land have been converted to rubber trees in areas of China, Laos, Thailand, Vietnam, Cambodia and Myanmar, where rubber trees were not traditionally grown. This expansion of rubber plantations has replaced ecologically important secondary forests and traditionally managed swidden fields and influenced local energy, water and carbon fluxes. Accurate and up-to-date monitoring and mapping of rubber tree growth is critical to understanding the implications of this changing ecosystem. Discriminating rubber trees from second-growth forests and fallow land has proven challenging. Previous experiments using machine-learning approaches with hard classifications on remotely sensed data, when faced with the realities of a heterogeneous plant-life mixture and high intra-class variance, have tended to overestimate the areas of rubber tree growth. Our current research sought to: 1) to investigate the potential of using a Mahalanobis typicality model to deal with mixed pixels; and 2) to explore the potential for combining MOderate Resolution Imaging Spectroradiometer (MODIS) imagery with sub-national statistical data on rubber tree areas to map the distribution of rubber tree growth across this mainland Southeast Asia landscape. Our study used time-series MODIS Terra 16-day composite 250 m Normalized Difference Vegetation Index (NDVI) products (MOD13Q1) acquired between March 2009 and May 2010. We used the Mahalanobis typicality method to identify pixels where rubber tree growth had the highest probability of occurring and sub-national statistical data on rubber tree growth to quantify the number of pixels of rubber tree growth mapped per administrative unit. We used Relative Operating Characteristic (ROC) and error matrix analysis, respectively, to assess the viability of Mahalanobis typicalities and to validate classification accuracy. High ROC values, over 0.8, were achieved with the Mahalanobis typicality images of both mature and young rubber trees. The proposed method greatly reduced the commission errors for the two types of rubber tree growth to 1.9% and 2.8%, respectively (corresponding to user’s accuracies of 98.1% and 97.2%, respectively). Results indicate that integrating Mahalanobis typicalities with MODIS time-series NDVI data and sub-national statistics can successfully overcome the earlier overestimation problem." @default.
- W2028261619 created "2016-06-24" @default.
- W2028261619 creator A5023826377 @default.
- W2028261619 creator A5061991816 @default.
- W2028261619 date "2012-03-01" @default.
- W2028261619 modified "2023-10-16" @default.
- W2028261619 title "Mapping rubber tree growth in mainland Southeast Asia using time-series MODIS 250 m NDVI and statistical data" @default.
- W2028261619 cites W1963768209 @default.
- W2028261619 cites W1968180086 @default.
- W2028261619 cites W1972344169 @default.
- W2028261619 cites W1976573273 @default.
- W2028261619 cites W2003321629 @default.
- W2028261619 cites W2011652694 @default.
- W2028261619 cites W2015641952 @default.
- W2028261619 cites W2018039708 @default.
- W2028261619 cites W2028262690 @default.
- W2028261619 cites W2029058476 @default.
- W2028261619 cites W2030165874 @default.
- W2028261619 cites W2031340414 @default.
- W2028261619 cites W2034596884 @default.
- W2028261619 cites W2035549557 @default.
- W2028261619 cites W2038951852 @default.
- W2028261619 cites W2041262239 @default.
- W2028261619 cites W2044284116 @default.
- W2028261619 cites W2045134881 @default.
- W2028261619 cites W2047695919 @default.
- W2028261619 cites W2055448925 @default.
- W2028261619 cites W2060384859 @default.
- W2028261619 cites W2071264562 @default.
- W2028261619 cites W2077570405 @default.
- W2028261619 cites W2081658083 @default.
- W2028261619 cites W2089467633 @default.
- W2028261619 cites W2095516222 @default.
- W2028261619 cites W2098017420 @default.
- W2028261619 cites W2099507093 @default.
- W2028261619 cites W2100335098 @default.
- W2028261619 cites W2102285524 @default.
- W2028261619 cites W2102953485 @default.
- W2028261619 cites W2120000166 @default.
- W2028261619 cites W2121025662 @default.
- W2028261619 cites W2124949171 @default.
- W2028261619 cites W2127728347 @default.
- W2028261619 cites W2127749122 @default.
- W2028261619 cites W2133359558 @default.
- W2028261619 cites W2138408852 @default.
- W2028261619 cites W2138973222 @default.
- W2028261619 cites W2139719117 @default.
- W2028261619 cites W2147390369 @default.
- W2028261619 cites W2155653793 @default.
- W2028261619 cites W2164045241 @default.
- W2028261619 cites W2168004371 @default.
- W2028261619 cites W2169803000 @default.
- W2028261619 cites W2169929747 @default.
- W2028261619 cites W2171058578 @default.
- W2028261619 cites W4236137412 @default.
- W2028261619 doi "https://doi.org/10.1016/j.apgeog.2011.06.018" @default.
- W2028261619 hasPublicationYear "2012" @default.
- W2028261619 type Work @default.
- W2028261619 sameAs 2028261619 @default.
- W2028261619 citedByCount "228" @default.
- W2028261619 countsByYear W20282616192012 @default.
- W2028261619 countsByYear W20282616192013 @default.
- W2028261619 countsByYear W20282616192014 @default.
- W2028261619 countsByYear W20282616192015 @default.
- W2028261619 countsByYear W20282616192016 @default.
- W2028261619 countsByYear W20282616192017 @default.
- W2028261619 countsByYear W20282616192018 @default.
- W2028261619 countsByYear W20282616192019 @default.
- W2028261619 countsByYear W20282616192020 @default.
- W2028261619 countsByYear W20282616192021 @default.
- W2028261619 countsByYear W20282616192022 @default.
- W2028261619 countsByYear W20282616192023 @default.
- W2028261619 crossrefType "journal-article" @default.
- W2028261619 hasAuthorship W2028261619A5023826377 @default.
- W2028261619 hasAuthorship W2028261619A5061991816 @default.
- W2028261619 hasConcept C100970517 @default.
- W2028261619 hasConcept C105795698 @default.
- W2028261619 hasConcept C111368507 @default.
- W2028261619 hasConcept C127313418 @default.
- W2028261619 hasConcept C132651083 @default.
- W2028261619 hasConcept C143724316 @default.
- W2028261619 hasConcept C151406439 @default.
- W2028261619 hasConcept C151730666 @default.
- W2028261619 hasConcept C1549246 @default.
- W2028261619 hasConcept C166957645 @default.
- W2028261619 hasConcept C195244886 @default.
- W2028261619 hasConcept C205649164 @default.
- W2028261619 hasConcept C2781300146 @default.
- W2028261619 hasConcept C3019398675 @default.
- W2028261619 hasConcept C33923547 @default.
- W2028261619 hasConcept C58640448 @default.
- W2028261619 hasConcept C62649853 @default.
- W2028261619 hasConcept C95457728 @default.
- W2028261619 hasConceptScore W2028261619C100970517 @default.
- W2028261619 hasConceptScore W2028261619C105795698 @default.
- W2028261619 hasConceptScore W2028261619C111368507 @default.
- W2028261619 hasConceptScore W2028261619C127313418 @default.
- W2028261619 hasConceptScore W2028261619C132651083 @default.