Matches in SemOpenAlex for { <https://semopenalex.org/work/W2028337592> ?p ?o ?g. }
- W2028337592 endingPage "78" @default.
- W2028337592 startingPage "69" @default.
- W2028337592 abstract "Thermal conductivity (TC) is among the most important characteristics of porous media for hydrocarbon reservoir thermal simulation and evaluating the efficiency of the thermal enhanced oil recovery process. In this study a two-layer artificial neural network (ANN) approach is proposed for estimating the effective TCs of dry and oil saturated sandstone at a wide range of environmental conditions. Temperature, pressure, porosity, bulk density of rock, fluid density and oil saturation are employed as independent variables for prediction of effective TCs of sandstone. Various types of ANN such as multi-layer perceptron (MLP), radial basis function, generalized regression and cascade-forward neural network have been examined and their predictive capabilities are compared. Statistical errors analysis confirms that a two-layer MLP network with seven and 15 hidden neurons are optimal topologies for modeling of TC of oil saturated and dry sandstone, respectively. The predictive capabilities of the optimal MLP models are validated by conventional recommended correlation and a large number of experimental data which were collected from various literatures. The predicted effective TC values have a good agreement with the experimental TC data, i.e., an absolute average relative deviation percent of 2.73% and 3.81% for the overall experimental dataset of oil saturated and dry sandstone, respectively. The results justify the superiority of the optimal MLP networks over the other considered models in simulation of the experimental effective TCs of dry and oil saturated sandstones." @default.
- W2028337592 created "2016-06-24" @default.
- W2028337592 creator A5022671549 @default.
- W2028337592 creator A5023485935 @default.
- W2028337592 creator A5045770642 @default.
- W2028337592 creator A5075625963 @default.
- W2028337592 date "2014-07-01" @default.
- W2028337592 modified "2023-10-01" @default.
- W2028337592 title "Modeling and analysis of effective thermal conductivity of sandstone at high pressure and temperature using optimal artificial neural networks" @default.
- W2028337592 cites W1902150074 @default.
- W2028337592 cites W1968402235 @default.
- W2028337592 cites W1971172181 @default.
- W2028337592 cites W1971735090 @default.
- W2028337592 cites W1971867153 @default.
- W2028337592 cites W1972315390 @default.
- W2028337592 cites W1978626680 @default.
- W2028337592 cites W1981469768 @default.
- W2028337592 cites W1986458749 @default.
- W2028337592 cites W2007812899 @default.
- W2028337592 cites W2011213930 @default.
- W2028337592 cites W2011308668 @default.
- W2028337592 cites W2020983812 @default.
- W2028337592 cites W2022475406 @default.
- W2028337592 cites W2029458918 @default.
- W2028337592 cites W2033297204 @default.
- W2028337592 cites W2041794483 @default.
- W2028337592 cites W2054539643 @default.
- W2028337592 cites W2058452843 @default.
- W2028337592 cites W2059420377 @default.
- W2028337592 cites W2070349493 @default.
- W2028337592 cites W2072773743 @default.
- W2028337592 cites W2074468952 @default.
- W2028337592 cites W2101927907 @default.
- W2028337592 cites W2103496339 @default.
- W2028337592 cites W2111694575 @default.
- W2028337592 cites W2122508729 @default.
- W2028337592 cites W2137983211 @default.
- W2028337592 cites W2145085734 @default.
- W2028337592 cites W2146615496 @default.
- W2028337592 cites W2147109232 @default.
- W2028337592 cites W2147202728 @default.
- W2028337592 cites W2147604828 @default.
- W2028337592 cites W2156894267 @default.
- W2028337592 cites W2169228003 @default.
- W2028337592 doi "https://doi.org/10.1016/j.petrol.2014.04.013" @default.
- W2028337592 hasPublicationYear "2014" @default.
- W2028337592 type Work @default.
- W2028337592 sameAs 2028337592 @default.
- W2028337592 citedByCount "31" @default.
- W2028337592 countsByYear W20283375922015 @default.
- W2028337592 countsByYear W20283375922016 @default.
- W2028337592 countsByYear W20283375922017 @default.
- W2028337592 countsByYear W20283375922018 @default.
- W2028337592 countsByYear W20283375922019 @default.
- W2028337592 countsByYear W20283375922020 @default.
- W2028337592 countsByYear W20283375922021 @default.
- W2028337592 countsByYear W20283375922022 @default.
- W2028337592 countsByYear W20283375922023 @default.
- W2028337592 crossrefType "journal-article" @default.
- W2028337592 hasAuthorship W2028337592A5022671549 @default.
- W2028337592 hasAuthorship W2028337592A5023485935 @default.
- W2028337592 hasAuthorship W2028337592A5045770642 @default.
- W2028337592 hasAuthorship W2028337592A5075625963 @default.
- W2028337592 hasConcept C105795698 @default.
- W2028337592 hasConcept C114614502 @default.
- W2028337592 hasConcept C119857082 @default.
- W2028337592 hasConcept C121332964 @default.
- W2028337592 hasConcept C122383733 @default.
- W2028337592 hasConcept C127313418 @default.
- W2028337592 hasConcept C159390177 @default.
- W2028337592 hasConcept C159985019 @default.
- W2028337592 hasConcept C179717631 @default.
- W2028337592 hasConcept C187320778 @default.
- W2028337592 hasConcept C192562407 @default.
- W2028337592 hasConcept C199289684 @default.
- W2028337592 hasConcept C204530211 @default.
- W2028337592 hasConcept C33923547 @default.
- W2028337592 hasConcept C41008148 @default.
- W2028337592 hasConcept C50644808 @default.
- W2028337592 hasConcept C60908668 @default.
- W2028337592 hasConcept C6648577 @default.
- W2028337592 hasConcept C78762247 @default.
- W2028337592 hasConcept C97346530 @default.
- W2028337592 hasConcept C97355855 @default.
- W2028337592 hasConcept C9930424 @default.
- W2028337592 hasConceptScore W2028337592C105795698 @default.
- W2028337592 hasConceptScore W2028337592C114614502 @default.
- W2028337592 hasConceptScore W2028337592C119857082 @default.
- W2028337592 hasConceptScore W2028337592C121332964 @default.
- W2028337592 hasConceptScore W2028337592C122383733 @default.
- W2028337592 hasConceptScore W2028337592C127313418 @default.
- W2028337592 hasConceptScore W2028337592C159390177 @default.
- W2028337592 hasConceptScore W2028337592C159985019 @default.
- W2028337592 hasConceptScore W2028337592C179717631 @default.
- W2028337592 hasConceptScore W2028337592C187320778 @default.
- W2028337592 hasConceptScore W2028337592C192562407 @default.
- W2028337592 hasConceptScore W2028337592C199289684 @default.
- W2028337592 hasConceptScore W2028337592C204530211 @default.