Matches in SemOpenAlex for { <https://semopenalex.org/work/W2028366245> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2028366245 endingPage "159" @default.
- W2028366245 startingPage "159" @default.
- W2028366245 abstract "To the Editor: An important source of bias in observational studies is confounding. According to the classic definition of confounding, a factor is a confounder if it is a risk factor for the disease and influences the occurrence of exposure. In addition, the factor must not be affected by the exposure of interest (no intermediate variable).1,2 The introduction of causal diagrams (directed acyclic graphs, or DAGs) into the epidemiologic literature, has established a new approach to conceptualize confounding and new rules to identify minimal sufficient adjustment sets have been established.3–6 Complex causal diagrams may contain hundreds of backdoor paths so that the identification of minimal sufficient adjustment sets may become complicated. To identify such sets, an algorithm of strict rules must be followed. As the DAG rules are logical rules, a software program is possible to identify the minimal sufficient adjustment sets. We developed a MS DOS command-line analysis tool, designed to select minimal sufficient adjustment sets within directed acyclic graphs. The main approach for identifying closed loops in the graph and finding all backdoor paths is the application of the so-called backtracking algorithm. Backtracking is an algorithm to solve combinatorial problems.7 The algorithm searches systematical for a solution to a problem among all alternatives. It works with the trial-and-error principle. The backtracking algorithm incrementally adds a new candidate to the interim solutions until a final solution is found. When an interim solution does not lead to the final solution then the last step will be removed and an alternative path will be sought. Either all solutions will be found or it will be shown that no solution is possible. The running-time of the algorithm depends on the number of backdoor paths. The classic example of backtracking is the 8 queens' puzzle, in which 8 chess queens must be positioned on a chess board in such a way that none of them is able to capture any other. The well-known Sudoku puzzle is another example of a puzzle that can be solved by backtracking. In the example of DAGs, the investigator uses the best available a priori knowledge to set up the most plausible causal diagram. The DAG program then follows strict DAG rules to identify the minimal sufficient adjustment to the given DAG. First, all covariates affected directly by the exposure are detected. Thereafter, closed loops are detected in the graph. If a closed loop is found, the program will stop (such a graph violates a necessary assumption of causal diagrams). If the graph is acyclic, the backtracking algorithm identifies all backdoor paths and then it identifies blocked and unblocked backdoor paths. Potentially sufficient adjustment sets are derived in a way that all backdoor paths are blocked. The sufficient adjustment sets with the lowest number of covariates are called minimally sufficient adjustment sets. If the minimally sufficient adjustment set has one or more colliders, the program will identify these colliders and suggest additional adjustment variables to account for collider-adjustment-induced bias.8 Potentially sufficient adjustment sets are listed again and the minimal sufficient adjustment sets are suggested by the program. The DAG program is written in C/C++ as a MS DOS program. A copy of the program and further information may be downloaded from http://epi.dlife.de/dag. Sven Knüppel Department of Epidemiology German Institute of Human Nutrition Potsdam-Rehbruecke Nuthetal, Germany [email protected] Andreas Stang Institute of Clinical Epidemiology Martin-Luther-University of Halle-Wittenberg Halle (Saale), Germany" @default.
- W2028366245 created "2016-06-24" @default.
- W2028366245 creator A5080262061 @default.
- W2028366245 creator A5086188590 @default.
- W2028366245 date "2010-01-01" @default.
- W2028366245 modified "2023-10-05" @default.
- W2028366245 title "DAG Program:" @default.
- W2028366245 cites W2113002312 @default.
- W2028366245 cites W2143457654 @default.
- W2028366245 cites W2146126871 @default.
- W2028366245 cites W4294553991 @default.
- W2028366245 doi "https://doi.org/10.1097/ede.0b013e3181c307ce" @default.
- W2028366245 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20010223" @default.
- W2028366245 hasPublicationYear "2010" @default.
- W2028366245 type Work @default.
- W2028366245 sameAs 2028366245 @default.
- W2028366245 citedByCount "53" @default.
- W2028366245 countsByYear W20283662452012 @default.
- W2028366245 countsByYear W20283662452013 @default.
- W2028366245 countsByYear W20283662452014 @default.
- W2028366245 countsByYear W20283662452015 @default.
- W2028366245 countsByYear W20283662452016 @default.
- W2028366245 countsByYear W20283662452017 @default.
- W2028366245 countsByYear W20283662452018 @default.
- W2028366245 countsByYear W20283662452019 @default.
- W2028366245 countsByYear W20283662452020 @default.
- W2028366245 countsByYear W20283662452021 @default.
- W2028366245 countsByYear W20283662452022 @default.
- W2028366245 countsByYear W20283662452023 @default.
- W2028366245 crossrefType "journal-article" @default.
- W2028366245 hasAuthorship W2028366245A5080262061 @default.
- W2028366245 hasAuthorship W2028366245A5086188590 @default.
- W2028366245 hasBestOaLocation W20283662451 @default.
- W2028366245 hasConcept C105795698 @default.
- W2028366245 hasConcept C11413529 @default.
- W2028366245 hasConcept C156884757 @default.
- W2028366245 hasConcept C158600405 @default.
- W2028366245 hasConcept C166957645 @default.
- W2028366245 hasConcept C177264268 @default.
- W2028366245 hasConcept C199360897 @default.
- W2028366245 hasConcept C2776957806 @default.
- W2028366245 hasConcept C33923547 @default.
- W2028366245 hasConcept C41008148 @default.
- W2028366245 hasConcept C74197172 @default.
- W2028366245 hasConcept C77350462 @default.
- W2028366245 hasConcept C80444323 @default.
- W2028366245 hasConcept C95457728 @default.
- W2028366245 hasConceptScore W2028366245C105795698 @default.
- W2028366245 hasConceptScore W2028366245C11413529 @default.
- W2028366245 hasConceptScore W2028366245C156884757 @default.
- W2028366245 hasConceptScore W2028366245C158600405 @default.
- W2028366245 hasConceptScore W2028366245C166957645 @default.
- W2028366245 hasConceptScore W2028366245C177264268 @default.
- W2028366245 hasConceptScore W2028366245C199360897 @default.
- W2028366245 hasConceptScore W2028366245C2776957806 @default.
- W2028366245 hasConceptScore W2028366245C33923547 @default.
- W2028366245 hasConceptScore W2028366245C41008148 @default.
- W2028366245 hasConceptScore W2028366245C74197172 @default.
- W2028366245 hasConceptScore W2028366245C77350462 @default.
- W2028366245 hasConceptScore W2028366245C80444323 @default.
- W2028366245 hasConceptScore W2028366245C95457728 @default.
- W2028366245 hasIssue "1" @default.
- W2028366245 hasLocation W20283662451 @default.
- W2028366245 hasLocation W20283662452 @default.
- W2028366245 hasLocation W20283662453 @default.
- W2028366245 hasOpenAccess W2028366245 @default.
- W2028366245 hasPrimaryLocation W20283662451 @default.
- W2028366245 hasRelatedWork W2030287811 @default.
- W2028366245 hasRelatedWork W2522397181 @default.
- W2028366245 hasRelatedWork W3002087755 @default.
- W2028366245 hasRelatedWork W3019817584 @default.
- W2028366245 hasRelatedWork W3023719900 @default.
- W2028366245 hasRelatedWork W3035083705 @default.
- W2028366245 hasRelatedWork W4220807758 @default.
- W2028366245 hasRelatedWork W4287798354 @default.
- W2028366245 hasRelatedWork W4386150491 @default.
- W2028366245 hasRelatedWork W4386534229 @default.
- W2028366245 hasVolume "21" @default.
- W2028366245 isParatext "false" @default.
- W2028366245 isRetracted "false" @default.
- W2028366245 magId "2028366245" @default.
- W2028366245 workType "article" @default.