Matches in SemOpenAlex for { <https://semopenalex.org/work/W2028449599> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2028449599 endingPage "228" @default.
- W2028449599 startingPage "223" @default.
- W2028449599 abstract "SPE Members Abstract Low permeability reservoirs are currently being propped with sand, resin coated sand, intermediate density proppants and bauxite. This wide range of proppant cost and performance has resulted in the proliferation of proppant selection models. Initially, a rather vague relationship between well depth and proppant strength dictated the choice of proppant. More recently, computerized models of varying complexity have become available which utilize net present value calculations. The input is based on the operator's performance goals for each well and specific reservoir properties. Simpler, non-computerized approaches also being used include cost/performance comparisons and nomographs. Each type of model, including several of the computerized models, will be examined. Utilizing these models and net present value calculations, optimum fracturing treatment designs have been developed for low permeability reservoirs such as the Prue in Oklahoma. Typical well conditions are used in each of the selection models and the results are compared. The computerized models allow the operator to determine, prior to fracturing, how changes in proppant type, size, and quantity will affect post-frac production over time periods ranging from several months to many years. Thus, the operator can choose the fracturing treatment design which best satisfies his economic performance goals for a particular well, whether those goals be long term or short term oriented. INTRODUCTION: In the design of a hydraulic fracturing treatment, one of the primary considerations is the fracturing fluid - its temperature stability, proppant transport capability, and possible interactions with the formation. However, the only part of the fracture treatment which remains and controls long term productivity from a well is the proppant which is placed in the fracture. As a result, placement of the correct type, size, and amount of proppant for the given reservoir and producing conditions is of primary importance. Before the correct proppant can be selected, it is first necessary to optimize the propped fracture length based on the reservoir conditions. Theoretically, fracture flow capacity is optimized such that a dimensionless conductivity of at least 10 is obtained. The theory and application of dimensionless conductivity has been well documented in the literature. In reality, fracture length is influenced to a great extent by operator budgets, common area practices and fluid properties. Based on these considerations and reservoir properties, penetration distance and proppant concentration profile are obtained using fracture design programs. A dimensionless conductivity of 10 cannot always be economically or operationally obtained. To complicate matters, there are now a variety of proppant types and sizes available, some of which vary greatly in cost, and most of which have overlapping application ranges. The purpose of the computerized proppant selection model is to determine how post-frac productivity will be affected by changes in proppant type, size, and quantity. Net present worth calculations are then applied so that the technical choices are expressed in economic terms. This allows the operator to choose the fracturing design which best fits his economic performance goals for the well. DESCRIPTION OF REPRESENTATIVE MODELS The simplest methods of proppant selection are in the form of graphs and nomographs. P. 83^" @default.
- W2028449599 created "2016-06-24" @default.
- W2028449599 creator A5051963581 @default.
- W2028449599 creator A5064865603 @default.
- W2028449599 date "1988-02-01" @default.
- W2028449599 modified "2023-09-25" @default.
- W2028449599 title "The Practical Application of Economic Well Performance Criteria to the Optimization of Fracturing Treatment Design" @default.
- W2028449599 doi "https://doi.org/10.2118/14982-pa" @default.
- W2028449599 hasPublicationYear "1988" @default.
- W2028449599 type Work @default.
- W2028449599 sameAs 2028449599 @default.
- W2028449599 citedByCount "6" @default.
- W2028449599 countsByYear W20284495992013 @default.
- W2028449599 crossrefType "journal-article" @default.
- W2028449599 hasAuthorship W2028449599A5051963581 @default.
- W2028449599 hasAuthorship W2028449599A5064865603 @default.
- W2028449599 hasConcept C104317684 @default.
- W2028449599 hasConcept C120882062 @default.
- W2028449599 hasConcept C127313418 @default.
- W2028449599 hasConcept C139719470 @default.
- W2028449599 hasConcept C151730666 @default.
- W2028449599 hasConcept C154945302 @default.
- W2028449599 hasConcept C158448853 @default.
- W2028449599 hasConcept C162324750 @default.
- W2028449599 hasConcept C17020691 @default.
- W2028449599 hasConcept C181230689 @default.
- W2028449599 hasConcept C183250156 @default.
- W2028449599 hasConcept C185592680 @default.
- W2028449599 hasConcept C2778348673 @default.
- W2028449599 hasConcept C2779096232 @default.
- W2028449599 hasConcept C41008148 @default.
- W2028449599 hasConcept C41625074 @default.
- W2028449599 hasConcept C54355233 @default.
- W2028449599 hasConcept C548895740 @default.
- W2028449599 hasConcept C55493867 @default.
- W2028449599 hasConcept C78762247 @default.
- W2028449599 hasConcept C81803558 @default.
- W2028449599 hasConcept C81917197 @default.
- W2028449599 hasConcept C86339819 @default.
- W2028449599 hasConcept C86803240 @default.
- W2028449599 hasConceptScore W2028449599C104317684 @default.
- W2028449599 hasConceptScore W2028449599C120882062 @default.
- W2028449599 hasConceptScore W2028449599C127313418 @default.
- W2028449599 hasConceptScore W2028449599C139719470 @default.
- W2028449599 hasConceptScore W2028449599C151730666 @default.
- W2028449599 hasConceptScore W2028449599C154945302 @default.
- W2028449599 hasConceptScore W2028449599C158448853 @default.
- W2028449599 hasConceptScore W2028449599C162324750 @default.
- W2028449599 hasConceptScore W2028449599C17020691 @default.
- W2028449599 hasConceptScore W2028449599C181230689 @default.
- W2028449599 hasConceptScore W2028449599C183250156 @default.
- W2028449599 hasConceptScore W2028449599C185592680 @default.
- W2028449599 hasConceptScore W2028449599C2778348673 @default.
- W2028449599 hasConceptScore W2028449599C2779096232 @default.
- W2028449599 hasConceptScore W2028449599C41008148 @default.
- W2028449599 hasConceptScore W2028449599C41625074 @default.
- W2028449599 hasConceptScore W2028449599C54355233 @default.
- W2028449599 hasConceptScore W2028449599C548895740 @default.
- W2028449599 hasConceptScore W2028449599C55493867 @default.
- W2028449599 hasConceptScore W2028449599C78762247 @default.
- W2028449599 hasConceptScore W2028449599C81803558 @default.
- W2028449599 hasConceptScore W2028449599C81917197 @default.
- W2028449599 hasConceptScore W2028449599C86339819 @default.
- W2028449599 hasConceptScore W2028449599C86803240 @default.
- W2028449599 hasIssue "02" @default.
- W2028449599 hasLocation W20284495991 @default.
- W2028449599 hasOpenAccess W2028449599 @default.
- W2028449599 hasPrimaryLocation W20284495991 @default.
- W2028449599 hasRelatedWork W1980261049 @default.
- W2028449599 hasRelatedWork W1987656607 @default.
- W2028449599 hasRelatedWork W2011491580 @default.
- W2028449599 hasRelatedWork W2064229196 @default.
- W2028449599 hasRelatedWork W2084466452 @default.
- W2028449599 hasRelatedWork W2096870879 @default.
- W2028449599 hasRelatedWork W3154844784 @default.
- W2028449599 hasRelatedWork W4242793159 @default.
- W2028449599 hasRelatedWork W4243892909 @default.
- W2028449599 hasRelatedWork W4244061343 @default.
- W2028449599 hasVolume "40" @default.
- W2028449599 isParatext "false" @default.
- W2028449599 isRetracted "false" @default.
- W2028449599 magId "2028449599" @default.
- W2028449599 workType "article" @default.