Matches in SemOpenAlex for { <https://semopenalex.org/work/W2028502419> ?p ?o ?g. }
- W2028502419 endingPage "296" @default.
- W2028502419 startingPage "287" @default.
- W2028502419 abstract "AME Aquatic Microbial Ecology Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsSpecials AME 29:287-296 (2002) - doi:10.3354/ame029287 Light and temperature acclimation of Rhodomonas salina (Cryptophyceae): photosynthetic performance Astrid Hammer1,*, Rhena Schumann1, Hendrik Schubert2 1University of Rostock, Department of Life Sciences, Institute of Aquatic Ecology, Albert-Einstein-Str. 3, 18051 Rostock, Germany 2University of Greifswald, Institute of Ecology, Grimmer Str. 88, 17487 Greifswald, Germany *E-mail: astrid.hammer@stud.uni-rostock.de ABSTRACT: Blooms of phototrophic cryptophytes have been observed in the highly eutrophic estuarine Darss-Zingst Bodden Chain (DZBC), Germany, during prolonged periods of light limitation due to ice and snow covering. The present study analyses possible mechanisms by which Rhodomonas salina, as a surrogate for bloom forming DZBC cryptophytes, maintains large densities during these low light/low temperature conditions. Growth, photosynthetic activity and pigment content were examined under 16 combinations of temperature (5 to 20°C) and irradiance (10 to 150 μmol photons m-2 s-1) under nutrient-saturated conditions in a seawater-based medium. R. salina was tested for its capacity to photoacclimate to different light intensities in relation to temperature by calculating the photoadaptive index Ek (light saturation point of photosynthesis, Pmax/a). Pmax, the maximum photosynthesis rate and a, the efficiency of light utilisation at limited light intensities remained unchanged with respect to irradiance for every temperature tested. Consequently Ek, the irradiance at which photosynthesis rate ceased to be light-limited was constant (mean 49 μmol photons m-2 s-1) within the chosen range of irradiances. This indicated that R. salina failed to adapt to down-shift changes in the light regime, at least in terms of photosynthetic parameters. Pigmentation analyses supported these results showing no acclimation of pigment ratios with regard to growth irradiance for a particular temperature. The calculated irradiance needed for 0 net photosynthesis (Ec) was about 26 μmol photons m-2 s-1 and did not show any significant variation in light or temperature. The failure of R. salina to respond to down-shift changes in the light regime did not result, however, in a reduction in growth at low irradiances (10 μmol photons m-2 s-1). Judging from these results, R. salina seems to pursue an alternative strategy to capture energy under low light conditions which we hypothesise to be uptake of dissolved organic carbon from the seawater-based medium. Follow-up research will concentrate on the relative contribution of heterotrophy to the overall nutrition of R. salina under white ice covering. KEY WORDS: Bloom · Cryptophytes · Rhodomonas salina · Ice · Photosynthesis · Photoacclimation Full text in pdf format PreviousNextExport citation RSS - Facebook - Tweet - linkedIn Cited by Published in AME Vol. 29, No. 3. Online publication date: October 23, 2002 Print ISSN: 0948-3055; Online ISSN: 1616-1564 Copyright © 2002 Inter-Research." @default.
- W2028502419 created "2016-06-24" @default.
- W2028502419 creator A5010273917 @default.
- W2028502419 creator A5029581888 @default.
- W2028502419 creator A5087608504 @default.
- W2028502419 date "2002-01-01" @default.
- W2028502419 modified "2023-09-25" @default.
- W2028502419 title "Light and temperature acclimation of Rhodomonas salina (Cryptophyceae): photosynthetic performance" @default.
- W2028502419 cites W116048206 @default.
- W2028502419 cites W1836969142 @default.
- W2028502419 cites W1965363759 @default.
- W2028502419 cites W1966565409 @default.
- W2028502419 cites W1968639983 @default.
- W2028502419 cites W1972083380 @default.
- W2028502419 cites W1975258039 @default.
- W2028502419 cites W1978451617 @default.
- W2028502419 cites W1982658513 @default.
- W2028502419 cites W1984928212 @default.
- W2028502419 cites W1985397904 @default.
- W2028502419 cites W1986279069 @default.
- W2028502419 cites W1988651004 @default.
- W2028502419 cites W2000250052 @default.
- W2028502419 cites W2000849994 @default.
- W2028502419 cites W2004059072 @default.
- W2028502419 cites W2005899758 @default.
- W2028502419 cites W2010988869 @default.
- W2028502419 cites W2014382155 @default.
- W2028502419 cites W2015266098 @default.
- W2028502419 cites W2017837943 @default.
- W2028502419 cites W2018506129 @default.
- W2028502419 cites W2023381555 @default.
- W2028502419 cites W2024853654 @default.
- W2028502419 cites W2024990740 @default.
- W2028502419 cites W2027949353 @default.
- W2028502419 cites W2030620346 @default.
- W2028502419 cites W2030673270 @default.
- W2028502419 cites W2034934912 @default.
- W2028502419 cites W2040605181 @default.
- W2028502419 cites W2042671526 @default.
- W2028502419 cites W2046155284 @default.
- W2028502419 cites W2055798289 @default.
- W2028502419 cites W2055896183 @default.
- W2028502419 cites W2058364305 @default.
- W2028502419 cites W2058725363 @default.
- W2028502419 cites W2060582181 @default.
- W2028502419 cites W2064483153 @default.
- W2028502419 cites W2067426249 @default.
- W2028502419 cites W2070008220 @default.
- W2028502419 cites W2073317899 @default.
- W2028502419 cites W2078586697 @default.
- W2028502419 cites W2080442234 @default.
- W2028502419 cites W2088543367 @default.
- W2028502419 cites W2089057196 @default.
- W2028502419 cites W2091822837 @default.
- W2028502419 cites W2093490575 @default.
- W2028502419 cites W2094249127 @default.
- W2028502419 cites W2096436152 @default.
- W2028502419 cites W2098740599 @default.
- W2028502419 cites W2118688890 @default.
- W2028502419 cites W2138255569 @default.
- W2028502419 cites W2139035913 @default.
- W2028502419 cites W2140426834 @default.
- W2028502419 cites W2146710986 @default.
- W2028502419 cites W2149737616 @default.
- W2028502419 cites W2154591424 @default.
- W2028502419 cites W2156841195 @default.
- W2028502419 cites W2160196996 @default.
- W2028502419 cites W2194565665 @default.
- W2028502419 cites W2306748636 @default.
- W2028502419 cites W2524224730 @default.
- W2028502419 cites W2609272174 @default.
- W2028502419 cites W2772920175 @default.
- W2028502419 cites W2772927723 @default.
- W2028502419 cites W2773726406 @default.
- W2028502419 cites W2512832906 @default.
- W2028502419 doi "https://doi.org/10.3354/ame029287" @default.
- W2028502419 hasPublicationYear "2002" @default.
- W2028502419 type Work @default.
- W2028502419 sameAs 2028502419 @default.
- W2028502419 citedByCount "62" @default.
- W2028502419 countsByYear W20285024192012 @default.
- W2028502419 countsByYear W20285024192013 @default.
- W2028502419 countsByYear W20285024192014 @default.
- W2028502419 countsByYear W20285024192015 @default.
- W2028502419 countsByYear W20285024192016 @default.
- W2028502419 countsByYear W20285024192017 @default.
- W2028502419 countsByYear W20285024192018 @default.
- W2028502419 countsByYear W20285024192019 @default.
- W2028502419 countsByYear W20285024192020 @default.
- W2028502419 countsByYear W20285024192021 @default.
- W2028502419 countsByYear W20285024192022 @default.
- W2028502419 countsByYear W20285024192023 @default.
- W2028502419 crossrefType "journal-article" @default.
- W2028502419 hasAuthorship W2028502419A5010273917 @default.
- W2028502419 hasAuthorship W2028502419A5029581888 @default.
- W2028502419 hasAuthorship W2028502419A5087608504 @default.
- W2028502419 hasBestOaLocation W20285024191 @default.
- W2028502419 hasConcept C119406331 @default.