Matches in SemOpenAlex for { <https://semopenalex.org/work/W2028551418> ?p ?o ?g. }
- W2028551418 endingPage "250" @default.
- W2028551418 startingPage "239" @default.
- W2028551418 abstract "MEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 356:239-250 (2008) - DOI: https://doi.org/10.3354/meps07286 Endothermy, ectothermy and the global structure of marine vertebrate communities David K. Cairns1,*, Anthony J. Gaston2, Falk Huettmann3 1Department of Fisheries and Oceans, PO Box 1236, Charlottetown, Prince Edward Island C1A 7M8, Canada 2Environment Canada, National Wildlife Research Centre, Ottawa, Ontario K1A 0H3, Canada 3Biology and Wildlife Department, Institute of Arctic Biology, EWHALE Lab, University of Alaska, Fairbanks, Alaska 99775-7000, USA *Email: cairnsd@dfo-mpo.gc.ca ABSTRACT: Birds and mammals are the leading marine predators at high latitudes, while sharks and other large fish occupy top positions in tropical waters. The present study proposes that temperature-dependent predation success (TPS) explains global patterns of marine vertebrate community structure. Burst speed increases with temperature in ectotherms but is independent of temperature in endotherms. If capture success depends on relative swimming speeds of predator and prey, ectothermic prey will be more vulnerable to attack by endothermic predators at low temperatures. Conversely, high temperatures should enhance the ability of ectothermic predators to prey on endotherms. Pursuit-diving seabirds (penguins, auks and some cormorants) and pinnipeds (seals and sea lions) are ubiquitous in ocean waters with summer surface temperatures cooler than the mid-teens to low 20s (°C) but are virtually absent in warmer regions. We suggest that the near-absence of these animals at low latitudes is due to TPS, as warm water increases the difficulty of capturing fish prey and increases vulnerability to predation by large ectothermic and partially endothermic sharks. Pursuit-diving birds and pinnipeds are virtually absent from warm temperate and tropical waters, even where primary productivity and fisheries data suggest that food supplies are ample. This indicates that the low productivity that prevails in much of the tropical zone cannot explain the worldwide distributional patterns of pursuit-diving birds and pinnipeds. Endothermy in marine communities increases with cooler temperatures and with animal size. Pursuit-diving birds and pinnipeds are sensitive to temperature limits and may suffer important range contractions as oceans warm. KEY WORDS: Predation · Predator-prey interactions · Seabirds · Pinnipeds · Seals · Whales · Marine food webs · Thermal ecology Full text in pdf format PreviousNextCite this article as: Cairns DK, Gaston AJ, Huettmann F (2008) Endothermy, ectothermy and the global structure of marine vertebrate communities. Mar Ecol Prog Ser 356:239-250. https://doi.org/10.3354/meps07286 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 356. Online publication date: March 18, 2008 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2008 Inter-Research." @default.
- W2028551418 created "2016-06-24" @default.
- W2028551418 creator A5002065590 @default.
- W2028551418 creator A5034608722 @default.
- W2028551418 creator A5070097821 @default.
- W2028551418 date "2008-03-18" @default.
- W2028551418 modified "2023-09-30" @default.
- W2028551418 title "Endothermy, ectothermy and the global structure of marine vertebrate communities" @default.
- W2028551418 cites W118556618 @default.
- W2028551418 cites W135428469 @default.
- W2028551418 cites W1489117804 @default.
- W2028551418 cites W1501007185 @default.
- W2028551418 cites W1511877202 @default.
- W2028551418 cites W1522296012 @default.
- W2028551418 cites W1654253241 @default.
- W2028551418 cites W1811206486 @default.
- W2028551418 cites W1951683832 @default.
- W2028551418 cites W1964971497 @default.
- W2028551418 cites W1966128035 @default.
- W2028551418 cites W1971063998 @default.
- W2028551418 cites W1976749359 @default.
- W2028551418 cites W1982196444 @default.
- W2028551418 cites W1991710441 @default.
- W2028551418 cites W2013666307 @default.
- W2028551418 cites W2014946375 @default.
- W2028551418 cites W2016922279 @default.
- W2028551418 cites W2021181345 @default.
- W2028551418 cites W2023024822 @default.
- W2028551418 cites W2034063727 @default.
- W2028551418 cites W2039871961 @default.
- W2028551418 cites W2041980579 @default.
- W2028551418 cites W2049730646 @default.
- W2028551418 cites W2049901357 @default.
- W2028551418 cites W2051663919 @default.
- W2028551418 cites W2053639015 @default.
- W2028551418 cites W2058593578 @default.
- W2028551418 cites W2060462995 @default.
- W2028551418 cites W2086544323 @default.
- W2028551418 cites W2089612645 @default.
- W2028551418 cites W2093861828 @default.
- W2028551418 cites W2101448560 @default.
- W2028551418 cites W2108232730 @default.
- W2028551418 cites W2108243307 @default.
- W2028551418 cites W2110899929 @default.
- W2028551418 cites W2112266433 @default.
- W2028551418 cites W2112315008 @default.
- W2028551418 cites W2118865437 @default.
- W2028551418 cites W2127313361 @default.
- W2028551418 cites W2130534187 @default.
- W2028551418 cites W2130693462 @default.
- W2028551418 cites W2143630245 @default.
- W2028551418 cites W2143892532 @default.
- W2028551418 cites W2147922169 @default.
- W2028551418 cites W2149533452 @default.
- W2028551418 cites W2149891345 @default.
- W2028551418 cites W2153030629 @default.
- W2028551418 cites W2170012981 @default.
- W2028551418 cites W2171275516 @default.
- W2028551418 cites W2224614359 @default.
- W2028551418 cites W2246787094 @default.
- W2028551418 cites W2318713524 @default.
- W2028551418 cites W2324579825 @default.
- W2028551418 cites W2326025766 @default.
- W2028551418 cites W239848632 @default.
- W2028551418 cites W2553201379 @default.
- W2028551418 cites W2588713220 @default.
- W2028551418 cites W2772515088 @default.
- W2028551418 cites W2916743836 @default.
- W2028551418 cites W3080258493 @default.
- W2028551418 cites W318458177 @default.
- W2028551418 cites W587356253 @default.
- W2028551418 cites W605751008 @default.
- W2028551418 cites W8905059 @default.
- W2028551418 cites W2120168456 @default.
- W2028551418 cites W2162399906 @default.
- W2028551418 doi "https://doi.org/10.3354/meps07286" @default.
- W2028551418 hasPublicationYear "2008" @default.
- W2028551418 type Work @default.
- W2028551418 sameAs 2028551418 @default.
- W2028551418 citedByCount "46" @default.
- W2028551418 countsByYear W20285514182012 @default.
- W2028551418 countsByYear W20285514182013 @default.
- W2028551418 countsByYear W20285514182014 @default.
- W2028551418 countsByYear W20285514182015 @default.
- W2028551418 countsByYear W20285514182016 @default.
- W2028551418 countsByYear W20285514182017 @default.
- W2028551418 countsByYear W20285514182018 @default.
- W2028551418 countsByYear W20285514182019 @default.
- W2028551418 countsByYear W20285514182020 @default.
- W2028551418 countsByYear W20285514182021 @default.
- W2028551418 countsByYear W20285514182022 @default.
- W2028551418 countsByYear W20285514182023 @default.
- W2028551418 crossrefType "journal-article" @default.
- W2028551418 hasAuthorship W2028551418A5002065590 @default.
- W2028551418 hasAuthorship W2028551418A5034608722 @default.
- W2028551418 hasAuthorship W2028551418A5070097821 @default.
- W2028551418 hasBestOaLocation W20285514181 @default.
- W2028551418 hasConcept C104317684 @default.