Matches in SemOpenAlex for { <https://semopenalex.org/work/W2028565527> ?p ?o ?g. }
- W2028565527 endingPage "6774" @default.
- W2028565527 startingPage "6771" @default.
- W2028565527 abstract "Conformational diseases such as amyloidosis, Alzheimer's disease, prion diseases, and the serpinopathies are all caused by structural rearrangements within a protein that transform it into a pathological species. These diseases are typified by the Z variant of α1-antitrypsin (E342K), which causes the retention of protein within hepatocytes as inclusion bodies that are associated with neonatal hepatitis and cirrhosis. The inclusion bodies result from the Z mutation perturbing the conformation of the protein, which facilitates a sequential interaction between the reactive center loop of one molecule and β-sheet A of a second. Therapies to prevent liver disease must block this reactive loop-β-sheet polymerization without interfering with other proteins of similar tertiary structure. We have used reactive loop peptides to explore the differences between the pathogenic Z and normal M α1-antitrypsin. The results show that the reactive loop is likely to be partially inserted into β-sheet A in Z α1-antitrypsin. This conformational difference from M α1-antitrypsin was exploited with a 6-mer reactive loop peptide (FLEAIG) that selectively and stably bound Z α1-antitrypsin. The importance of this finding is that the peptide prevented the polymerization of Z α1-antitrypsin and did not significantly anneal to other proteins (such as antithrombin, α1-antichymotrypsin, and plasminogen activator inhibitor-1) with a similar tertiary structure. These findings provide a lead compound for the development of small molecule inhibitors that can be used to treat patients with Z α1-antitrypsin deficiency. Furthermore they demonstrate how a conformational disease process can be selectively inhibited with a small peptide. Conformational diseases such as amyloidosis, Alzheimer's disease, prion diseases, and the serpinopathies are all caused by structural rearrangements within a protein that transform it into a pathological species. These diseases are typified by the Z variant of α1-antitrypsin (E342K), which causes the retention of protein within hepatocytes as inclusion bodies that are associated with neonatal hepatitis and cirrhosis. The inclusion bodies result from the Z mutation perturbing the conformation of the protein, which facilitates a sequential interaction between the reactive center loop of one molecule and β-sheet A of a second. Therapies to prevent liver disease must block this reactive loop-β-sheet polymerization without interfering with other proteins of similar tertiary structure. We have used reactive loop peptides to explore the differences between the pathogenic Z and normal M α1-antitrypsin. The results show that the reactive loop is likely to be partially inserted into β-sheet A in Z α1-antitrypsin. This conformational difference from M α1-antitrypsin was exploited with a 6-mer reactive loop peptide (FLEAIG) that selectively and stably bound Z α1-antitrypsin. The importance of this finding is that the peptide prevented the polymerization of Z α1-antitrypsin and did not significantly anneal to other proteins (such as antithrombin, α1-antichymotrypsin, and plasminogen activator inhibitor-1) with a similar tertiary structure. These findings provide a lead compound for the development of small molecule inhibitors that can be used to treat patients with Z α1-antitrypsin deficiency. Furthermore they demonstrate how a conformational disease process can be selectively inhibited with a small peptide. Members of the serine proteinase inhibitor or serpin superfamily are characterized by an exposed 14-residue (P14-1) mobile reactive center loop and a dominant five-stranded β-sheet A (1Whisstock J. Skinner R. Lesk A.M. Trends Biochem. Sci. 1998; 23: 63-67Abstract Full Text PDF PubMed Scopus (162) Google Scholar, 2Silverman G.A. Bird P.I. Carrell R.W. Coughlin P.B. Gettins P.G. Irving J.I. Lomas D.A. Luke C.J. Moyer R.W. Pemberton P.A. Remold-O'Donnell E. Salvesen G.S. Travis J. Whisstock J.C. J. Biol. Chem. 2001; 276: 33293-33296Abstract Full Text Full Text PDF PubMed Scopus (1056) Google Scholar) (Fig. 1 a). Biochemical and crystallographic studies have defined the marked flexibility of the reactive loop and have demonstrated its role in inhibiting the target proteinase (3Stratikos E. Gettins P.G.W. Proc. Natl. Acad. Sci. U. S. A. 1997; 4: 453-458Crossref Scopus (138) Google Scholar, 4Stratikos E. Gettins P.G. Proc. Natl. Acad. Sci. U. S. A. 1999; 96: 4808-4813Crossref PubMed Scopus (216) Google Scholar, 5Fa M. Bergstrom F. Hagglof P. Wilczynska M. Johansson L.B. Ny T. Struct. Fold. Des. 2000; 8: 397-405Abstract Full Text Full Text PDF Scopus (71) Google Scholar, 6Huntington J.A. Read R.J. Carrell R.W. Nature. 2000; 407: 923-926Crossref PubMed Scopus (938) Google Scholar). The proteinase binds to the serpin and cleaves the reactive loop at the P1-P1′ bond. This cleavage initiates a profound conformational change in the serpin in which the reactive loop peptide inserts into β-sheet A to form a new central strand termed s4A (6Huntington J.A. Read R.J. Carrell R.W. Nature. 2000; 407: 923-926Crossref PubMed Scopus (938) Google Scholar,7Loebermann H. Tokuoka R. Deisenhofer J. Huber R. J. Mol. Biol. 1984; 177: 531-556Crossref PubMed Scopus (607) Google Scholar). The conformational change inactivates the proteinase by translocating it over 70 Å to the lower pole of the molecule and disrupting the catalytic site.This reactive loop-β-sheet A interaction, while being essential for proteinase inhibition, also renders the serpin vulnerable to conformational disturbances that are associated with disease, the serpinopathies (8Stein P.E. Carrell R.W. Nat. Struct. Biol. 1995; 2: 96-113Crossref PubMed Scopus (390) Google Scholar). Point mutations perturb the relationship between the reactive loop and β-sheet A to allow the sequential interaction between the reactive center loop of one molecule and β-sheet A of another (Fig. 1 a). These loop-sheet polymers are inactive as proteinase inhibitors and are retained within the cell of synthesis. This process is best characterized for the deficiency variants of α1-antitrypsin (9Lomas D.A. Evans D.L. Finch J.T. Carrell R.W. Nature. 1992; 357: 605-607Crossref PubMed Scopus (886) Google Scholar, 10Dafforn T.R. Mahadeva R. Elliott P.R. Sivasothy P. Lomas D.A. J. Biol. Chem. 1999; 274: 9548-9555Abstract Full Text Full Text PDF PubMed Scopus (214) Google Scholar, 11Mahadeva R. Chang W.-S.W. Dafforn T. Oakley D.J. Foreman R.C. Calvin J. Wight D.G.D. Lomas D.A. J. Clin. Invest. 1999; 103: 999-1006Crossref PubMed Scopus (168) Google Scholar, 12Sivasothy P. Dafforn T.R. Gettins P.G. Lomas D.A. J. Biol. Chem. 2000; 275: 33663-33668Abstract Full Text Full Text PDF PubMed Scopus (128) Google Scholar, 13Elliott P.R. Stein P.E. Bilton D. Carrell R.W. Lomas D.A. Nat. Struct. Biol. 1996; 3: 910-911Crossref PubMed Scopus (79) Google Scholar). α1-Antitrypsin is synthesized in hepatocytes and circulates in the plasma. Most Northern Europeans are M homozygotes, but 1 in 25 has the severe Z α1-antitrypsin deficiency variant (E342K). This is at residue P17 (17 residues proximal to the P1reactive center) at the head of strand 5 of β-sheet A and the base of the mobile reactive loop (Fig. 1). The mutation opens β-sheet A thereby favoring the insertion of the reactive loop of another α1-antitrypsin molecule to form a dimer. This can then extend to form chains of polymers that accumulate in the endoplasmic reticulum of the liver to form inclusion bodies (9Lomas D.A. Evans D.L. Finch J.T. Carrell R.W. Nature. 1992; 357: 605-607Crossref PubMed Scopus (886) Google Scholar). These inclusions result in neonatal hepatitis, cirrhosis, and hepatocellular carcinoma (14Sharp H.L. Bridges R.A. Krivit W. Freier E.F. J. Lab. Clin. Med. 1969; 73: 934-939PubMed Google Scholar, 15Eriksson S. Carlson J. Velez R. N. Eng. J. Med. 1986; 314: 736-739Crossref PubMed Scopus (475) Google Scholar, 16Perlmutter D.H. Schiff E.R. Sorrell M.F. Maddrey W.C. Schiff's Diseases of the Liver. 8th Ed. Lippincott-Raven, Philadelphia, PA1999: 1131-1150Google Scholar), and the lack of circulating proteinase inhibitor exposes the lungs to uncontrolled proteolytic attack and early onset emphysema (17Eriksson S. Acta Med. Scand. Suppl. 1965; 432: 1-85PubMed Google Scholar).An effective approach to treatment of the liver disease would be to inhibit polymerization of the Z α1-antitrypsin and thus prevent the accumulation of the protein within hepatocytes. Previous studies have shown that synthetic peptides with homology to the reactive loop of α1-antitrypsin and the related serpin antithrombin can anneal to β-sheet A of both M α1-antitrypsin and antithrombin (18Schulze A.J. Baumann U. Knof S. Jaeger E. Huber R. Laurell C.-B. Eur. J. Biochem. 1990; 194: 51-56Crossref PubMed Scopus (174) Google Scholar, 19Björk I. Ylinenjärvi K. Olson S.T. Bock P. J. Biol. Chem. 1992; 267: 1976-1982Abstract Full Text PDF PubMed Google Scholar, 20Chang W.-S. Wardell M.R. Lomas D.A Carrell R.W. Biochem. J. 1996; 314: 647-653Crossref PubMed Scopus (64) Google Scholar, 21Skinner R. Chang W.-S.W. Jin L. Pei X. Huntington J.A. Abrahams J.P. Carrell R.W. Lomas D.A. J. Mol. Biol. 1998; 283: 9-14Crossref PubMed Scopus (94) Google Scholar). Furthermore, binding of these 11–13-mer peptides prevents the polymerization of Z α1-antitrypsin (9Lomas D.A. Evans D.L. Finch J.T. Carrell R.W. Nature. 1992; 357: 605-607Crossref PubMed Scopus (886) Google Scholar) (Fig.1 a). However, such peptides are promiscuous and can efficiently anneal to, and inactivate, both M and Z α1-antitrypsin and other members of the serpin superfamily (20Chang W.-S. Wardell M.R. Lomas D.A Carrell R.W. Biochem. J. 1996; 314: 647-653Crossref PubMed Scopus (64) Google Scholar). Their size and lack of specificity precludes the use of these peptides as therapeutic agents or as lead compounds from which to develop mimetic drugs. Consequently other strategies are being developed to prevent polymerization using chemical chaperones (22Burrows J.A. Willis L.K. Perlmutter D.H. Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 1796-1801Crossref PubMed Scopus (377) Google Scholar, 23Devlin G.L. Parfrey H. Tew D.J. Lomas D.A. Bottomley S.P. Am. J. Respir. Cell Mol. Biol. 2001; 24: 727-732Crossref PubMed Scopus (86) Google Scholar) and by targeting a hydrophobic pocket (24Elliott P.R. Abrahams J.-P. Lomas D.A. J. Mol. Biol. 1998; 275: 419-425Crossref PubMed Scopus (132) Google Scholar, 25Kim S. Woo J. Seo E.J., Yu, M. Ryu S. J. Mol. Biol. 2001; 306: 109-119Crossref PubMed Scopus (54) Google Scholar) that is filled as polymers form (26Elliott P.R. Pei X.Y. Dafforn T.R. Lomas D.A. Protein Sci. 2000; 9: 1274-1281Crossref PubMed Scopus (169) Google Scholar).We report here the use of reactive loop peptides to explore the structural differences between the pathogenic Z and normal M α1-antitrypsin. This has allowed us to first define the pathogenic conformation of Z α1-antitrypsin and then exploit this difference from M α1-antitrypsin to target a 6-mer peptide specifically to Z α1-antitrypsin to prevent polymerization.RESULTS AND DISCUSSIONThe 12-mer P14-3 peptide, corresponding to the reactive loop of antithrombin, was incubated in 100-fold molar excess with 0.1 mg/ml M and Z α1-antitrypsin at 37 °C. The binding of the reactive loop peptide to α1-antitrypsin was monitored on acrylamide/8 m urea gels and by intrinsic tryptophan fluorescence. Native α1-antitrypsin unfolded in the urea and was retarded by the gel. The binary complex of α1-antitrypsin with peptide was stable in 8 murea and hence migrated further into the acrylamide. The peptide annealed at a much slower rate to Z α1-antitrypsin than it did to M α1-antitrypsin (Fig.2, top). Analysis of intrinsic tryptophan fluorescence allowed a more detailed assessment of the rate of peptide annealing. The addition of peptide to M α1-antitrypsin resulted in a significant increase in fluorescence as the peptide annealed to β-sheet A, reflecting incorporation of the reactive loop peptide into α1-antitrypsin (Fig. 2, bottom). However, the Z variant accepted the 12-mer reactive loop peptide at less than half of the rate of M α1-antitrypsin (2.6 × 10−5 and 6.0 × 10−5 s−1for Z and M α1-antitrypsin, respectively). There was no change in fluorescence signal from α1-antitrypsin cleaved at the reactive loop with Staphylococcus aureus V8 proteinase when incubated under the same conditions (data not shown).Figure 2Top, 7.5% (w/v) acrylamide, 8m urea gel showing the comparative rates of insertion of the 12-mer peptide into M and Z α1-antitrypsin. M and Z α1-antitrypsin were incubated at 0.1 mg/ml with 100-fold excess of peptide at 37 °C for 5 days. Each lane contains 4 μg of α1-antitrypsin. Note the presence of a small amount of polymers of Z α1-antitrypsin in the starting material.Bottom, intrinsic tryptophan fluorescence of M α1-antitrypsin and Z α1-antitrypsin (0.1 mg/ml) with 100-fold molar excess of the 12-mer peptide at 37 °C for 24 h.View Large Image Figure ViewerDownload Hi-res image Download (PPT)Both reactive loop peptide annealing to serpins and the formation of loop-sheet polymers occurs by intramolecular addition of a strand to β-sheet A (12Sivasothy P. Dafforn T.R. Gettins P.G. Lomas D.A. J. Biol. Chem. 2000; 275: 33663-33668Abstract Full Text Full Text PDF PubMed Scopus (128) Google Scholar, 18Schulze A.J. Baumann U. Knof S. Jaeger E. Huber R. Laurell C.-B. Eur. J. Biochem. 1990; 194: 51-56Crossref PubMed Scopus (174) Google Scholar, 21Skinner R. Chang W.-S.W. Jin L. Pei X. Huntington J.A. Abrahams J.P. Carrell R.W. Lomas D.A. J. Mol. Biol. 1998; 283: 9-14Crossref PubMed Scopus (94) Google Scholar, 29Xue Y. Bjorquist P. Inghardt T. Linschoten M. Musil D. Sjolin L Deinum J. Structure. 1998; 15: 627-636Abstract Full Text Full Text PDF Scopus (94) Google Scholar) (Fig. 1 a). The Z mutation of α1-antitrypsin readily favors loop-sheet polymerization and therefore must make this region more receptive to the reactive center loop of another molecule (Fig. 1 a). However, our data show that the 12-mer reactive loop peptide anneals to Z α1-antitrypsin at a slower rate than to the nonpolymerogenic M α1-antitrypsin. This can be explained by examining the crystal structure of α1-antitrypsin (26Elliott P.R. Pei X.Y. Dafforn T.R. Lomas D.A. Protein Sci. 2000; 9: 1274-1281Crossref PubMed Scopus (169) Google Scholar), which shows that the Z mutation lies at the head of strand 5 of β-sheet A and at the base of the reactive center loop. The positively charged lysine residue in Z α1-antitrypsin must destabilize the upper part of β-sheet A to allow partial insertion of the reactive center loop (Fig. 1 b). This partial loop insertion would explain the slower rate of annealing of full-length reactive loop peptides. It would also explain the rapid conversion to polymers as these are formed by annealing of P8-3 of the reactive loop to the lower part of β-sheet A (12Sivasothy P. Dafforn T.R. Gettins P.G. Lomas D.A. J. Biol. Chem. 2000; 275: 33663-33668Abstract Full Text Full Text PDF PubMed Scopus (128) Google Scholar, 30Elliott P.R. Lomas D.A. Carrell R.W. Abrahams J.P. Nat. Struct. Biol. 1996; 3: 676-681Crossref PubMed Scopus (244) Google Scholar, 31Dunstone M.A. Dai W. Whisstock J.C. Rossjohn J. Pike R.N. Feil S.C., Le Bonniec B.F. Parker M.W. Bottomley S. Protein Sci. 2000; 9: 417-420Crossref PubMed Scopus (81) Google Scholar, 32Huntington J.A. Pannu N.S. Hazes B. Read R.J. Lomas D.A Carrell R.W. J. Mol. Biol. 1999; 293: 449-455Crossref PubMed Scopus (117) Google Scholar). The conformation adopted by Z α1-antitrypsin is therefore similar to that produced by annealing a P14-8 7-mer reactive loop peptide to antithrombin, which opens the top of β-sheet A to favor polymerization (33Fitton H.L. Pike R.N. Carrell R.W. Chang W.-S.W. Biol. Chem. 1997; 378: 1059-1063PubMed Google Scholar). It also approximates the conformation seen in our crystal structure of a naturally occurring mutant of α1-antichymotrypsin that also readily forms polymersin vitro and in vivo (34Gooptu B. Hazes B. Chang W.S. Dafforn T.R. Carrell R.W. Read R.J. Lomas D.A. Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 67-92Crossref PubMed Scopus (176) Google Scholar).The hypothesis that the pathogenic conformation adopted by Z α1-antitrypsin is associated with partial insertion of the reactive loop was tested using a peptide targeted to the lower part of β-sheet A. A 6-mer peptide that was homologous to P7-2of the reactive loop of α1-antitrypsin was obtained from Dr A. Zhou and colleagues (Department of Hematology, University of Cambridge) who were undertaking a separate study on the structural requirements for peptide-β-sheet A blockage (Fig. 1 b). This peptide was able to anneal to Z, but not to M α1-antitrypsin (Fig. 3,top), and resulted in a 60% reduction in its inhibitory activity against bovine α-chymotrypsin (data not shown). Furthermore, the rate of fluorescence increase when the peptide annealed was over 30-fold more rapid with Z α1-antitrypsin than with M α1-antitrypsin: 2.2 × 10−5 and 0.07 × 10−5 s−1 for Z and M α1-antitrypsin, respectively (Fig. 3, middle). The importance of this interaction was highlighted by co-incubation of the 6-mer peptide with Z α1-antitrypsin, which resulted in a complete inhibition of polymerization of Z α1-antitrypsin when incubated at 37 °C (Fig. 3,bottom) and 41 °C (data not shown). It is likely that the peptide also prevented polymerization of Z α1-antitrypsin at peptide:protein ratios of less than 25:1, although accurate values were precluded by limited peptide solubility.Figure 3Top, 7.5% (w/v) acrylamide, 8m urea gel showing the insertion of the 6-mer peptide into Z but not M α1-antitrypsin. M and Z α1-antitrypsin were incubated at 0.5 mg/ml with 100-fold molar excess of peptide at 37 °C for 3 days. Each lane contains 4 μg of α1-antitrypsin. Middle, intrinsic tryptophan fluorescence of M α1-antitrypsin and Z α1-antitrypsin (0.1 mg/ml) with 100-fold molar excess of the 6-mer peptide at 37 °C for 24 h. Bottom, 7.5% (w/v) nondenaturing PAGE to assess the effect of the 6-mer peptide on the polymerization of Z α1-antitrypsin. Z α1-antitrypsin (0.5 mg/ml) was incubated with (right side) and without (left side) 100-fold molar excess of the 6-mer peptide at 37 °C for 12 days. Each lane contains 10 μg of α1-antitrypsin.View Large Image Figure ViewerDownload Hi-res image Download (PPT)Peptide annealing was specific for Z α1-antitrypsin as co-incubation of the 6-mer peptide with M α1-antitrypsin for 3 days resulted in no significant binary complex formation (Fig. 3,top). Moreover it had no effect on inhibitory activity of M α1-antitrypsin against bovine α-chymotrypsin or the ability of M α1-antitrypsin to form SDS-stable complexes with trypsin (data not shown). The specificity of the interaction of the 6-mer peptide with Z α1-antitrypsin was underscored by the demonstration that it would not anneal to other members of the serpin superfamily that have the same tertiary structure (α1-antichymotrypsin, plasminogen activator inhibitor-1, or α-antithrombin) when incubated under physiological conditions (data not shown).The implications of these findings are 2-fold. First, an effective approach to treat the liver disease associated with Z α1-antitrypsin would be to inhibit polymerization of the Z protein and thus prevent the accumulation of the protein within hepatocytes. However, this approach may result in the release of inactive Z α1-antitrypsin and would require intravenous replacement therapy with normal α1-antitrypsin to replenish plasma levels to prevent emphysema. This makes it essential to specifically block β-sheet A of Z α1-antitrypsin but not M α1-antitrypsin or other proteins with a similar tertiary structure. We have shown that this is achievable in vitro. Second, these findings extend to other diseases that result from polymer formation. Loop-sheet polymerization is also recognized to underlie the deficiency of other members of the serpin superfamily: antithrombin (35Bruce D. Perry D.J. Borg J.-Y. Carrell R.W. Wardell M.R. J. Clin. Invest. 1994; 94: 2265-2274Crossref PubMed Scopus (149) Google Scholar), C1-inhibitor (36Aulak K.S. Eldering E. Hack C.E. Lubbers Y.P.T. Harrison R.A. Mast A. Cicardi M. Davis III, A.E. J. Biol. Chem. 1993; 268: 18088-18094Abstract Full Text PDF PubMed Google Scholar, 37Eldering E. Verpy E. Roem D. Meo T. Tosi M. J. Biol. Chem. 1995; 270: 2579-2587Abstract Full Text Full Text PDF PubMed Scopus (93) Google Scholar), α1-antichymotrypsin (34Gooptu B. Hazes B. Chang W.S. Dafforn T.R. Carrell R.W. Read R.J. Lomas D.A. Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 67-92Crossref PubMed Scopus (176) Google Scholar), and neuroserpin (38Davis R.L. Shrimpton A.E. Holohan P. Bradshaw C. Feiglin D. Sonderegger P. Kinter J. Becker L.M. Lacbawan F. Kraesnewich M. Muenke M. Lawrence D.A. Yerby M.S. Shaw C.-M. Gooptu B. Elliott P.E. Finch J.T. Carrell R.W. Lomas DA Nature. 1999; 401: 376-379Crossref PubMed Google Scholar), which are associated with thrombosis, angioedema, emphysema, and an inclusion body dementia, respectively. All the mutations that favor these disease processes have been shown, or been predicted, to open β-sheet A and facilitate polymer formation (8Stein P.E. Carrell R.W. Nat. Struct. Biol. 1995; 2: 96-113Crossref PubMed Scopus (390) Google Scholar, 38Davis R.L. Shrimpton A.E. Holohan P. Bradshaw C. Feiglin D. Sonderegger P. Kinter J. Becker L.M. Lacbawan F. Kraesnewich M. Muenke M. Lawrence D.A. Yerby M.S. Shaw C.-M. Gooptu B. Elliott P.E. Finch J.T. Carrell R.W. Lomas DA Nature. 1999; 401: 376-379Crossref PubMed Google Scholar, 39Carrell R.W. Lomas D.A. Lancet. 1997; 350: 134-138Abstract Full Text Full Text PDF PubMed Scopus (808) Google Scholar). It is likely that peptides or synthetic mimetics can be created that will bind specifically to these mutant serpins, prevent polymer formation, and so attenuate disease.In summary, these findings offer the real prospect of selectively targeting Z α1-antitrypsin to prevent polymerization and so ameliorate the associated liver disease. The challenge for the future is to reconcile the requirements of a small molecule for specific inhibition of Z α1-antitrypsin with those properties needed for drug design and targeting to the endoplasmic reticulum. Members of the serine proteinase inhibitor or serpin superfamily are characterized by an exposed 14-residue (P14-1) mobile reactive center loop and a dominant five-stranded β-sheet A (1Whisstock J. Skinner R. Lesk A.M. Trends Biochem. Sci. 1998; 23: 63-67Abstract Full Text PDF PubMed Scopus (162) Google Scholar, 2Silverman G.A. Bird P.I. Carrell R.W. Coughlin P.B. Gettins P.G. Irving J.I. Lomas D.A. Luke C.J. Moyer R.W. Pemberton P.A. Remold-O'Donnell E. Salvesen G.S. Travis J. Whisstock J.C. J. Biol. Chem. 2001; 276: 33293-33296Abstract Full Text Full Text PDF PubMed Scopus (1056) Google Scholar) (Fig. 1 a). Biochemical and crystallographic studies have defined the marked flexibility of the reactive loop and have demonstrated its role in inhibiting the target proteinase (3Stratikos E. Gettins P.G.W. Proc. Natl. Acad. Sci. U. S. A. 1997; 4: 453-458Crossref Scopus (138) Google Scholar, 4Stratikos E. Gettins P.G. Proc. Natl. Acad. Sci. U. S. A. 1999; 96: 4808-4813Crossref PubMed Scopus (216) Google Scholar, 5Fa M. Bergstrom F. Hagglof P. Wilczynska M. Johansson L.B. Ny T. Struct. Fold. Des. 2000; 8: 397-405Abstract Full Text Full Text PDF Scopus (71) Google Scholar, 6Huntington J.A. Read R.J. Carrell R.W. Nature. 2000; 407: 923-926Crossref PubMed Scopus (938) Google Scholar). The proteinase binds to the serpin and cleaves the reactive loop at the P1-P1′ bond. This cleavage initiates a profound conformational change in the serpin in which the reactive loop peptide inserts into β-sheet A to form a new central strand termed s4A (6Huntington J.A. Read R.J. Carrell R.W. Nature. 2000; 407: 923-926Crossref PubMed Scopus (938) Google Scholar,7Loebermann H. Tokuoka R. Deisenhofer J. Huber R. J. Mol. Biol. 1984; 177: 531-556Crossref PubMed Scopus (607) Google Scholar). The conformational change inactivates the proteinase by translocating it over 70 Å to the lower pole of the molecule and disrupting the catalytic site. This reactive loop-β-sheet A interaction, while being essential for proteinase inhibition, also renders the serpin vulnerable to conformational disturbances that are associated with disease, the serpinopathies (8Stein P.E. Carrell R.W. Nat. Struct. Biol. 1995; 2: 96-113Crossref PubMed Scopus (390) Google Scholar). Point mutations perturb the relationship between the reactive loop and β-sheet A to allow the sequential interaction between the reactive center loop of one molecule and β-sheet A of another (Fig. 1 a). These loop-sheet polymers are inactive as proteinase inhibitors and are retained within the cell of synthesis. This process is best characterized for the deficiency variants of α1-antitrypsin (9Lomas D.A. Evans D.L. Finch J.T. Carrell R.W. Nature. 1992; 357: 605-607Crossref PubMed Scopus (886) Google Scholar, 10Dafforn T.R. Mahadeva R. Elliott P.R. Sivasothy P. Lomas D.A. J. Biol. Chem. 1999; 274: 9548-9555Abstract Full Text Full Text PDF PubMed Scopus (214) Google Scholar, 11Mahadeva R. Chang W.-S.W. Dafforn T. Oakley D.J. Foreman R.C. Calvin J. Wight D.G.D. Lomas D.A. J. Clin. Invest. 1999; 103: 999-1006Crossref PubMed Scopus (168) Google Scholar, 12Sivasothy P. Dafforn T.R. Gettins P.G. Lomas D.A. J. Biol. Chem. 2000; 275: 33663-33668Abstract Full Text Full Text PDF PubMed Scopus (128) Google Scholar, 13Elliott P.R. Stein P.E. Bilton D. Carrell R.W. Lomas D.A. Nat. Struct. Biol. 1996; 3: 910-911Crossref PubMed Scopus (79) Google Scholar). α1-Antitrypsin is synthesized in hepatocytes and circulates in the plasma. Most Northern Europeans are M homozygotes, but 1 in 25 has the severe Z α1-antitrypsin deficiency variant (E342K). This is at residue P17 (17 residues proximal to the P1reactive center) at the head of strand 5 of β-sheet A and the base of the mobile reactive loop (Fig. 1). The mutation opens β-sheet A thereby favoring the insertion of the reactive loop of another α1-antitrypsin molecule to form a dimer. This can then extend to form chains of polymers that accumulate in the endoplasmic reticulum of the liver to form inclusion bodies (9Lomas D.A. Evans D.L. Finch J.T. Carrell R.W. Nature. 1992; 357: 605-607Crossref PubMed Scopus (886) Google Scholar). These inclusions result in neonatal hepatitis, cirrhosis, and hepatocellular carcinoma (14Sharp H.L. Bridges R.A. Krivit W. Freier E.F. J. Lab. Clin. Med. 1969; 73: 934-939PubMed Google Scholar, 15Eriksson S. Carlson J. Velez R. N. Eng. J. Med. 1986; 314: 736-739Crossref PubMed Scopus (475) Google Scholar, 16Perlmutter D.H. Schiff E.R. Sorrell M.F. Maddrey W.C. Schiff's Diseases of the Liver. 8th Ed. Lippincott-Raven, Philadelphia, PA1999: 1131-1150Google Scholar), and the lack of circulating proteinase inhibitor exposes the lungs to uncontrolled proteolytic attack and early onset emphysema (17Eriksson S. Acta Med. Scand. Suppl. 1965; 432: 1-85PubMed Google Scholar). An effective approach to treatment of the liver disease would be to inhibit polymerization of the Z α1-antitrypsin and thus prevent the accumulation of the protein within hepatocytes. Previous studies have shown that synthetic peptides with homology to the reactive loop of α1-antitrypsin and the related serpin antithrombin can anneal to β-sheet A of both M α1-antitrypsin and antithrombin (18Schulze A.J. Baumann U. Knof S. Jaeger E. Huber R. Laurell C.-B. Eur. J. Biochem. 1990; 194: 51-56Crossref PubMed Scopus (174) Google Scholar, 19Björk I. Ylinenjärvi K. Olson S.T. Bock P. J. Biol. Chem. 1992; 267: 1976-1982Abstract Full Text PDF PubMed Google Scholar, 20Chang W.-S. Wardell M.R. Lomas D.A Carrell R.W. Biochem. J. 1996; 314: 647-653Crossref PubMed Scopus (64) Google Scholar, 21Skinner R. Chang W.-S.W. Jin L. Pei X. Huntington J.A. Abrahams J.P. Carrell R.W. Lomas D.A. J. Mol. Biol. 1998; 283: 9-14Crossref PubMed Scopus (94) Google Scholar). Furthermore, binding of these 11–13-mer peptides prevents the polymerization of Z α1-antitrypsin (9Lomas D.A. Evans D.L. Finch J.T. Carrell R.W. Nature. 1992; 357: 605-607Crossref PubMed Scopus (886) Google Scholar) (Fig.1 a). However, such peptides are promiscuous and can efficiently anneal to, and inactivate, both M and Z α1-antitrypsin and other members of the serpin superfamily (20Chang W.-S. Wardell M.R. Lomas D.A Carrell R.W. Biochem. J. 1996; 314: 647-653Crossref PubMed Scopus (64) Google Scholar). Their size and lack of specificity precludes the use of these peptides as therapeutic agents or as lead compounds from which to develop mimetic drugs. Consequently other strategies are being developed to prevent polymerization using chemical chaperones (22Burrows J.A. Willis L.K. Perlmutter D.H. Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 1796-1801Crossref PubMed Scopus (377) Google Scholar, 23Devlin G.L. Parfrey H. Tew D.J. Lomas D.A. Bottomley S.P. Am. J. Respir. Cell Mol. Biol. 2001; 24: 727-732Crossref PubMed Scopus (86) Google Scholar) and by targeting a hydrophobic pocket (24Elliott P.R. Abrahams J.-P. Lomas D.A. J. Mol. Biol. 1998; 275: 419-425Crossref PubMed Scopus (132) Google Scholar, 25Kim S. Woo J. Seo E.J., Yu, M. Ryu S. J. Mol. Biol. 2001; 306: 109-119Crossref PubMed Scopus (54) Google Scholar) that is filled as polymers form (26Elliott P.R. Pei X.Y. Dafforn T.R. Lomas D.A. Protein Sci. 2000; 9: 1274-1281Crossref PubMed Scopus (169) Google Scholar). We report here the use of reactive loop peptides to explore the structural differences between the pathogenic Z and normal M α1-antitrypsin. This has allowed us to first define the pathogenic conformation of Z α1-antitrypsin and then exploit this difference from M α1-antitrypsin to target a 6-mer peptide specifically to Z α1-antitrypsin to prevent polymerization. RESULTS AND DISCUSSIONThe 12-mer P14-3 peptide, corresponding to the reactive loop of antithrombin, was incubated in 100-fold molar excess with 0.1 mg/ml M and Z α1-antitrypsin at 37 °C. The binding of the reactive loop peptide to α1-antitrypsin was monitored on acrylamide/8 m urea gels and by intrinsic tryptophan fluorescence. Native α1-antitrypsin unfolded in the urea and was retarded by the gel. The binary complex of α1-antitrypsin with peptide was stable in 8 murea and hence migrated further into the acrylamide. The peptide annealed at a much slower rate to Z α1-antitrypsin than it did to M α1-antitrypsin (Fig.2, top). Analysis of intrinsic tryptophan fluorescence allowed a more detailed assessment of the rate of peptide annealing. The addition of peptide to M α1-antitrypsin resulted in a significant increase in fluorescence as the peptide annealed to β-sheet A, reflecting incorporation of the reactive loop peptide into α1-antitrypsin (Fig. 2, bottom). However, the Z variant accepted the 12-mer reactive loop peptide at less than half of the rate of M α1-antitrypsin (2.6 × 10−5 and 6.0 × 10−5 s−1for Z and M α1-antitrypsin, respectively). There was no change in fluorescence signal from α1-antitrypsin cleaved at the reactive loop with Staphylococcus aureus V8 proteinase when incubated under the same conditions (data not shown).Both reactive loop peptide annealing to serpins and the formation of loop-sheet polymers occurs by intramolecular addition of a strand to β-sheet A (12Sivasothy P. Dafforn T.R. Gettins P.G. Lomas D.A. J. Biol. Chem. 2000; 275: 33663-33668Abstract Full Text Full Text PDF PubMed Scopus (128) Google Scholar, 18Schulze A.J. Baumann U. Knof S. Jaeger E. Huber R. Laurell C.-B. Eur. J. Biochem. 1990; 194: 51-56Crossref PubMed Scopus (174) Google Scholar, 21Skinner R. Chang W.-S.W. Jin L. Pei X. Huntington J.A. Abrahams J.P. Carrell R.W. Lomas D.A. J. Mol. Biol. 1998; 283: 9-14Crossref PubMed Scopus (94) Google Scholar, 29Xue Y. Bjorquist P. Inghardt T. Linschoten M. Musil D. Sjolin L Deinum J. Structure. 1998; 15: 627-636Abstract Full Text Full Text PDF Scopus (94) Google Scholar) (Fig. 1 a). The Z mutation of α1-antitrypsin readily favors loop-sheet polymerization and therefore must make this region more receptive to the reactive center loop of another molecule (Fig. 1 a). However, our data show that the 12-mer reactive loop peptide anneals to Z α1-antitrypsin at a slower rate than to the nonpolymerogenic M α1-antitrypsin. This can be explained by examining the crystal structure of α1-antitrypsin (26Elliott P.R. Pei X.Y. Dafforn T.R. Lomas D.A. Protein Sci. 2000; 9: 1274-1281Crossref PubMed Scopus (169) Google Scholar), which shows that the Z mutation lies at the head of strand 5 of β-sheet A and at the base of the reactive center loop. The positively charged lysine residue in Z α1-antitrypsin must destabilize the upper part of β-sheet A to allow partial insertion of the reactive center loop (Fig. 1 b). This partial loop insertion would explain the slower rate of annealing of full-length reactive loop peptides. It would also explain the rapid conversion to polymers as these are formed by annealing of P8-3 of the reactive loop to the lower part of β-sheet A (12Sivasothy P. Dafforn T.R. Gettins P.G. Lomas D.A. J. Biol. Chem. 2000; 275: 33663-33668Abstract Full Text Full Text PDF PubMed Scopus (128) Google Scholar, 30Elliott P.R. Lomas D.A. Carrell R.W. Abrahams J.P. Nat. Struct. Biol. 1996; 3: 676-681Crossref PubMed Scopus (244) Google Scholar, 31Dunstone M.A. Dai W. Whisstock J.C. Rossjohn J. Pike R.N. Feil S.C., Le Bonniec B.F. Parker M.W. Bottomley S. Protein Sci. 2000; 9: 417-420Crossref PubMed Scopus (81) Google Scholar, 32Huntington J.A. Pannu N.S. Hazes B. Read R.J. Lomas D.A Carrell R.W. J. Mol. Biol. 1999; 293: 449-455Crossref PubMed Scopus (117) Google Scholar). The conformation adopted by Z α1-antitrypsin is therefore similar to that produced by annealing a P14-8 7-mer reactive loop peptide to antithrombin, which opens the top of β-sheet A to favor polymerization (33Fitton H.L. Pike R.N. Carrell R.W. Chang W.-S.W. Biol. Chem. 1997; 378: 1059-1063PubMed Google Scholar). It also approximates the conformation seen in our crystal structure of a naturally occurring mutant of α1-antichymotrypsin that also readily forms polymersin vitro and in vivo (34Gooptu B. Hazes B. Chang W.S. Dafforn T.R. Carrell R.W. Read R.J. Lomas D.A. Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 67-92Crossref PubMed Scopus (176) Google Scholar).The hypothesis that the pathogenic conformation adopted by Z α1-antitrypsin is associated with partial insertion of the reactive loop was tested using a peptide targeted to the lower part of β-sheet A. A 6-mer peptide that was homologous to P7-2of the reactive loop of α1-antitrypsin was obtained from Dr A. Zhou and colleagues (Department of Hematology, University of Cambridge) who were undertaking a separate study on the structural requirements for peptide-β-sheet A blockage (Fig. 1 b). This peptide was able to anneal to Z, but not to M α1-antitrypsin (Fig. 3,top), and resulted in a 60% reduction in its inhibitory activity against bovine α-chymotrypsin (data not shown). Furthermore, the rate of fluorescence increase when the peptide annealed was over 30-fold more rapid with Z α1-antitrypsin than with M α1-antitrypsin: 2.2 × 10−5 and 0.07 × 10−5 s−1 for Z and M α1-antitrypsin, respectively (Fig. 3, middle). The importance of this interaction was highlighted by co-incubation of the 6-mer peptide with Z α1-antitrypsin, which resulted in a complete inhibition of polymerization of Z α1-antitrypsin when incubated at 37 °C (Fig. 3,bottom) and 41 °C (data not shown). It is likely that the peptide also prevented polymerization of Z α1-antitrypsin at peptide:protein ratios of less than 25:1, although accurate values were precluded by limited peptide solubility.Figure 3Top, 7.5% (w/v) acrylamide, 8m urea gel showing the insertion of the 6-mer peptide into Z but not M α1-antitrypsin. M and Z α1-antitrypsin were incubated at 0.5 mg/ml with 100-fold molar excess of peptide at 37 °C for 3 days. Each lane contains 4 μg of α1-antitrypsin. Middle, intrinsic tryptophan fluorescence of M α1-antitrypsin and Z α1-antitrypsin (0.1 mg/ml) with 100-fold molar excess of the 6-mer peptide at 37 °C for 24 h. Bottom, 7.5% (w/v) nondenaturing PAGE to assess the effect of the 6-mer peptide on the polymerization of Z α1-antitrypsin. Z α1-antitrypsin (0.5 mg/ml) was incubated with (right side) and without (left side) 100-fold molar excess of the 6-mer peptide at 37 °C for 12 days. Each lane contains 10 μg of α1-antitrypsin.View Large Image Figure ViewerDownload Hi-res image Download (PPT)Peptide annealing was specific for Z α1-antitrypsin as co-incubation of the 6-mer peptide with M α1-antitrypsin for 3 days resulted in no significant binary complex formation (Fig. 3,top). Moreover it had no effect on inhibitory activity of M α1-antitrypsin against bovine α-chymotrypsin or the ability of M α1-antitrypsin to form SDS-stable complexes with trypsin (data not shown). The specificity of the interaction of the 6-mer peptide with Z α1-antitrypsin was underscored by the demonstration that it would not anneal to other members of the serpin superfamily that have the same tertiary structure (α1-antichymotrypsin, plasminogen activator inhibitor-1, or α-antithrombin) when incubated under physiological conditions (data not shown).The implications of these findings are 2-fold. First, an effective approach to treat the liver disease associated with Z α1-antitrypsin would be to inhibit polymerization of the Z protein and thus prevent the accumulation of the protein within hepatocytes. However, this approach may result in the release of inactive Z α1-antitrypsin and would require intravenous replacement therapy with normal α1-antitrypsin to replenish plasma levels to prevent emphysema. This makes it essential to specifically block β-sheet A of Z α1-antitrypsin but not M α1-antitrypsin or other proteins with a similar tertiary structure. We have shown that this is achievable in vitro. Second, these findings extend to other diseases that result from polymer formation. Loop-sheet polymerization is also recognized to underlie the deficiency of other members of the serpin superfamily: antithrombin (35Bruce D. Perry D.J. Borg J.-Y. Carrell R.W. Wardell M.R. J. Clin. Invest. 1994; 94: 2265-2274Crossref PubMed Scopus (149) Google Scholar), C1-inhibitor (36Aulak K.S. Eldering E. Hack C.E. Lubbers Y.P.T. Harrison R.A. Mast A. Cicardi M. Davis III, A.E. J. Biol. Chem. 1993; 268: 18088-18094Abstract Full Text PDF PubMed Google Scholar, 37Eldering E. Verpy E. Roem D. Meo T. Tosi M. J. Biol. Chem. 1995; 270: 2579-2587Abstract Full Text Full Text PDF PubMed Scopus (93) Google Scholar), α1-antichymotrypsin (34Gooptu B. Hazes B. Chang W.S. Dafforn T.R. Carrell R.W. Read R.J. Lomas D.A. Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 67-92Crossref PubMed Scopus (176) Google Scholar), and neuroserpin (38Davis R.L. Shrimpton A.E. Holohan P. Bradshaw C. Feiglin D. Sonderegger P. Kinter J. Becker L.M. Lacbawan F. Kraesnewich M. Muenke M. Lawrence D.A. Yerby M.S. Shaw C.-M. Gooptu B. Elliott P.E. Finch J.T. Carrell R.W. Lomas DA Nature. 1999; 401: 376-379Crossref PubMed Google Scholar), which are associated with thrombosis, angioedema, emphysema, and an inclusion body dementia, respectively. All the mutations that favor these disease processes have been shown, or been predicted, to open β-sheet A and facilitate polymer formation (8Stein P.E. Carrell R.W. Nat. Struct. Biol. 1995; 2: 96-113Crossref PubMed Scopus (390) Google Scholar, 38Davis R.L. Shrimpton A.E. Holohan P. Bradshaw C. Feiglin D. Sonderegger P. Kinter J. Becker L.M. Lacbawan F. Kraesnewich M. Muenke M. Lawrence D.A. Yerby M.S. Shaw C.-M. Gooptu B. Elliott P.E. Finch J.T. Carrell R.W. Lomas DA Nature. 1999; 401: 376-379Crossref PubMed Google Scholar, 39Carrell R.W. Lomas D.A. Lancet. 1997; 350: 134-138Abstract Full Text Full Text PDF PubMed Scopus (808) Google Scholar). It is likely that peptides or synthetic mimetics can be created that will bind specifically to these mutant serpins, prevent polymer formation, and so attenuate disease.In summary, these findings offer the real prospect of selectively targeting Z α1-antitrypsin to prevent polymerization and so ameliorate the associated liver disease. The challenge for the future is to reconcile the requirements of a small molecule for specific inhibition of Z α1-antitrypsin with those properties needed for drug design and targeting to the endoplasmic reticulum. The 12-mer P14-3 peptide, corresponding to the reactive loop of antithrombin, was incubated in 100-fold molar excess with 0.1 mg/ml M and Z α1-antitrypsin at 37 °C. The binding of the reactive loop peptide to α1-antitrypsin was monitored on acrylamide/8 m urea gels and by intrinsic tryptophan fluorescence. Native α1-antitrypsin unfolded in the urea and was retarded by the gel. The binary complex of α1-antitrypsin with peptide was stable in 8 murea and hence migrated further into the acrylamide. The peptide annealed at a much slower rate to Z α1-antitrypsin than it did to M α1-antitrypsin (Fig.2, top). Analysis of intrinsic tryptophan fluorescence allowed a more detailed assessment of the rate of peptide annealing. The addition of peptide to M α1-antitrypsin resulted in a significant increase in fluorescence as the peptide annealed to β-sheet A, reflecting incorporation of the reactive loop peptide into α1-antitrypsin (Fig. 2, bottom). However, the Z variant accepted the 12-mer reactive loop peptide at less than half of the rate of M α1-antitrypsin (2.6 × 10−5 and 6.0 × 10−5 s−1for Z and M α1-antitrypsin, respectively). There was no change in fluorescence signal from α1-antitrypsin cleaved at the reactive loop with Staphylococcus aureus V8 proteinase when incubated under the same conditions (data not shown). Both reactive loop peptide annealing to serpins and the formation of loop-sheet polymers occurs by intramolecular addition of a strand to β-sheet A (12Sivasothy P. Dafforn T.R. Gettins P.G. Lomas D.A. J. Biol. Chem. 2000; 275: 33663-33668Abstract Full Text Full Text PDF PubMed Scopus (128) Google Scholar, 18Schulze A.J. Baumann U. Knof S. Jaeger E. Huber R. Laurell C.-B. Eur. J. Biochem. 1990; 194: 51-56Crossref PubMed Scopus (174) Google Scholar, 21Skinner R. Chang W.-S.W. Jin L. Pei X. Huntington J.A. Abrahams J.P. Carrell R.W. Lomas D.A. J. Mol. Biol. 1998; 283: 9-14Crossref PubMed Scopus (94) Google Scholar, 29Xue Y. Bjorquist P. Inghardt T. Linschoten M. Musil D. Sjolin L Deinum J. Structure. 1998; 15: 627-636Abstract Full Text Full Text PDF Scopus (94) Google Scholar) (Fig. 1 a). The Z mutation of α1-antitrypsin readily favors loop-sheet polymerization and therefore must make this region more receptive to the reactive center loop of another molecule (Fig. 1 a). However, our data show that the 12-mer reactive loop peptide anneals to Z α1-antitrypsin at a slower rate than to the nonpolymerogenic M α1-antitrypsin. This can be explained by examining the crystal structure of α1-antitrypsin (26Elliott P.R. Pei X.Y. Dafforn T.R. Lomas D.A. Protein Sci. 2000; 9: 1274-1281Crossref PubMed Scopus (169) Google Scholar), which shows that the Z mutation lies at the head of strand 5 of β-sheet A and at the base of the reactive center loop. The positively charged lysine residue in Z α1-antitrypsin must destabilize the upper part of β-sheet A to allow partial insertion of the reactive center loop (Fig. 1 b). This partial loop insertion would explain the slower rate of annealing of full-length reactive loop peptides. It would also explain the rapid conversion to polymers as these are formed by annealing of P8-3 of the reactive loop to the lower part of β-sheet A (12Sivasothy P. Dafforn T.R. Gettins P.G. Lomas D.A. J. Biol. Chem. 2000; 275: 33663-33668Abstract Full Text Full Text PDF PubMed Scopus (128) Google Scholar, 30Elliott P.R. Lomas D.A. Carrell R.W. Abrahams J.P. Nat. Struct. Biol. 1996; 3: 676-681Crossref PubMed Scopus (244) Google Scholar, 31Dunstone M.A. Dai W. Whisstock J.C. Rossjohn J. Pike R.N. Feil S.C., Le Bonniec B.F. Parker M.W. Bottomley S. Protein Sci. 2000; 9: 417-420Crossref PubMed Scopus (81) Google Scholar, 32Huntington J.A. Pannu N.S. Hazes B. Read R.J. Lomas D.A Carrell R.W. J. Mol. Biol. 1999; 293: 449-455Crossref PubMed Scopus (117) Google Scholar). The conformation adopted by Z α1-antitrypsin is therefore similar to that produced by annealing a P14-8 7-mer reactive loop peptide to antithrombin, which opens the top of β-sheet A to favor polymerization (33Fitton H.L. Pike R.N. Carrell R.W. Chang W.-S.W. Biol. Chem. 1997; 378: 1059-1063PubMed Google Scholar). It also approximates the conformation seen in our crystal structure of a naturally occurring mutant of α1-antichymotrypsin that also readily forms polymersin vitro and in vivo (34Gooptu B. Hazes B. Chang W.S. Dafforn T.R. Carrell R.W. Read R.J. Lomas D.A. Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 67-92Crossref PubMed Scopus (176) Google Scholar). The hypothesis that the pathogenic conformation adopted by Z α1-antitrypsin is associated with partial insertion of the reactive loop was tested using a peptide targeted to the lower part of β-sheet A. A 6-mer peptide that was homologous to P7-2of the reactive loop of α1-antitrypsin was obtained from Dr A. Zhou and colleagues (Department of Hematology, University of Cambridge) who were undertaking a separate study on the structural requirements for peptide-β-sheet A blockage (Fig. 1 b). This peptide was able to anneal to Z, but not to M α1-antitrypsin (Fig. 3,top), and resulted in a 60% reduction in its inhibitory activity against bovine α-chymotrypsin (data not shown). Furthermore, the rate of fluorescence increase when the peptide annealed was over 30-fold more rapid with Z α1-antitrypsin than with M α1-antitrypsin: 2.2 × 10−5 and 0.07 × 10−5 s−1 for Z and M α1-antitrypsin, respectively (Fig. 3, middle). The importance of this interaction was highlighted by co-incubation of the 6-mer peptide with Z α1-antitrypsin, which resulted in a complete inhibition of polymerization of Z α1-antitrypsin when incubated at 37 °C (Fig. 3,bottom) and 41 °C (data not shown). It is likely that the peptide also prevented polymerization of Z α1-antitrypsin at peptide:protein ratios of less than 25:1, although accurate values were precluded by limited peptide solubility. Peptide annealing was specific for Z α1-antitrypsin as co-incubation of the 6-mer peptide with M α1-antitrypsin for 3 days resulted in no significant binary complex formation (Fig. 3,top). Moreover it had no effect on inhibitory activity of M α1-antitrypsin against bovine α-chymotrypsin or the ability of M α1-antitrypsin to form SDS-stable complexes with trypsin (data not shown). The specificity of the interaction of the 6-mer peptide with Z α1-antitrypsin was underscored by the demonstration that it would not anneal to other members of the serpin superfamily that have the same tertiary structure (α1-antichymotrypsin, plasminogen activator inhibitor-1, or α-antithrombin) when incubated under physiological conditions (data not shown). The implications of these findings are 2-fold. First, an effective approach to treat the liver disease associated with Z α1-antitrypsin would be to inhibit polymerization of the Z protein and thus prevent the accumulation of the protein within hepatocytes. However, this approach may result in the release of inactive Z α1-antitrypsin and would require intravenous replacement therapy with normal α1-antitrypsin to replenish plasma levels to prevent emphysema. This makes it essential to specifically block β-sheet A of Z α1-antitrypsin but not M α1-antitrypsin or other proteins with a similar tertiary structure. We have shown that this is achievable in vitro. Second, these findings extend to other diseases that result from polymer formation. Loop-sheet polymerization is also recognized to underlie the deficiency of other members of the serpin superfamily: antithrombin (35Bruce D. Perry D.J. Borg J.-Y. Carrell R.W. Wardell M.R. J. Clin. Invest. 1994; 94: 2265-2274Crossref PubMed Scopus (149) Google Scholar), C1-inhibitor (36Aulak K.S. Eldering E. Hack C.E. Lubbers Y.P.T. Harrison R.A. Mast A. Cicardi M. Davis III, A.E. J. Biol. Chem. 1993; 268: 18088-18094Abstract Full Text PDF PubMed Google Scholar, 37Eldering E. Verpy E. Roem D. Meo T. Tosi M. J. Biol. Chem. 1995; 270: 2579-2587Abstract Full Text Full Text PDF PubMed Scopus (93) Google Scholar), α1-antichymotrypsin (34Gooptu B. Hazes B. Chang W.S. Dafforn T.R. Carrell R.W. Read R.J. Lomas D.A. Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 67-92Crossref PubMed Scopus (176) Google Scholar), and neuroserpin (38Davis R.L. Shrimpton A.E. Holohan P. Bradshaw C. Feiglin D. Sonderegger P. Kinter J. Becker L.M. Lacbawan F. Kraesnewich M. Muenke M. Lawrence D.A. Yerby M.S. Shaw C.-M. Gooptu B. Elliott P.E. Finch J.T. Carrell R.W. Lomas DA Nature. 1999; 401: 376-379Crossref PubMed Google Scholar), which are associated with thrombosis, angioedema, emphysema, and an inclusion body dementia, respectively. All the mutations that favor these disease processes have been shown, or been predicted, to open β-sheet A and facilitate polymer formation (8Stein P.E. Carrell R.W. Nat. Struct. Biol. 1995; 2: 96-113Crossref PubMed Scopus (390) Google Scholar, 38Davis R.L. Shrimpton A.E. Holohan P. Bradshaw C. Feiglin D. Sonderegger P. Kinter J. Becker L.M. Lacbawan F. Kraesnewich M. Muenke M. Lawrence D.A. Yerby M.S. Shaw C.-M. Gooptu B. Elliott P.E. Finch J.T. Carrell R.W. Lomas DA Nature. 1999; 401: 376-379Crossref PubMed Google Scholar, 39Carrell R.W. Lomas D.A. Lancet. 1997; 350: 134-138Abstract Full Text Full Text PDF PubMed Scopus (808) Google Scholar). It is likely that peptides or synthetic mimetics can be created that will bind specifically to these mutant serpins, prevent polymer formation, and so attenuate disease. In summary, these findings offer the real prospect of selectively targeting Z α1-antitrypsin to prevent polymerization and so ameliorate the associated liver disease. The challenge for the future is to reconcile the requirements of a small molecule for specific inhibition of Z α1-antitrypsin with those properties needed for drug design and targeting to the endoplasmic reticulum. We are grateful to Dr. Damian Crowther, Dr. Klara Belzar, and Dr. Alec Mushunje (Departments of Medicine and Hematology, University of Cambridge) who supplied the α1-antichymotrypsin, plasminogen activator inhibitor-1, and α-antithrombin, respectively. We also thank Dr. Aiwu Zhou and colleagues (Department of Hematology, University of Cambridge) for access to the peptide FLEAIG from the structural study on peptide-β-sheet A blockage." @default.
- W2028565527 created "2016-06-24" @default.
- W2028565527 creator A5004063906 @default.
- W2028565527 creator A5005679926 @default.
- W2028565527 creator A5036734448 @default.
- W2028565527 creator A5081209995 @default.
- W2028565527 date "2002-03-01" @default.
- W2028565527 modified "2023-10-15" @default.
- W2028565527 title "6-mer Peptide Selectively Anneals to a Pathogenic Serpin Conformation and Blocks Polymerization" @default.
- W2028565527 cites W1486977846 @default.
- W2028565527 cites W1494517489 @default.
- W2028565527 cites W1498984457 @default.
- W2028565527 cites W1583012020 @default.
- W2028565527 cites W1963500684 @default.
- W2028565527 cites W1964524187 @default.
- W2028565527 cites W1976151141 @default.
- W2028565527 cites W1980660976 @default.
- W2028565527 cites W1984839844 @default.
- W2028565527 cites W1985494921 @default.
- W2028565527 cites W2008161233 @default.
- W2028565527 cites W2011112213 @default.
- W2028565527 cites W2013474205 @default.
- W2028565527 cites W2016977751 @default.
- W2028565527 cites W2024055340 @default.
- W2028565527 cites W2024387510 @default.
- W2028565527 cites W2024750173 @default.
- W2028565527 cites W2045203290 @default.
- W2028565527 cites W2049022764 @default.
- W2028565527 cites W2054159211 @default.
- W2028565527 cites W2062906571 @default.
- W2028565527 cites W2072665488 @default.
- W2028565527 cites W2079859332 @default.
- W2028565527 cites W2081111499 @default.
- W2028565527 cites W2083120544 @default.
- W2028565527 cites W2083934313 @default.
- W2028565527 cites W2088226166 @default.
- W2028565527 cites W2095179052 @default.
- W2028565527 cites W2164670428 @default.
- W2028565527 cites W2170327826 @default.
- W2028565527 cites W2171215167 @default.
- W2028565527 cites W2325223078 @default.
- W2028565527 cites W330357786 @default.
- W2028565527 cites W4240929891 @default.
- W2028565527 doi "https://doi.org/10.1074/jbc.c100722200" @default.
- W2028565527 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11773044" @default.
- W2028565527 hasPublicationYear "2002" @default.
- W2028565527 type Work @default.
- W2028565527 sameAs 2028565527 @default.
- W2028565527 citedByCount "160" @default.
- W2028565527 countsByYear W20285655272012 @default.
- W2028565527 countsByYear W20285655272013 @default.
- W2028565527 countsByYear W20285655272014 @default.
- W2028565527 countsByYear W20285655272015 @default.
- W2028565527 countsByYear W20285655272016 @default.
- W2028565527 countsByYear W20285655272017 @default.
- W2028565527 countsByYear W20285655272018 @default.
- W2028565527 countsByYear W20285655272019 @default.
- W2028565527 countsByYear W20285655272020 @default.
- W2028565527 countsByYear W20285655272021 @default.
- W2028565527 countsByYear W20285655272022 @default.
- W2028565527 countsByYear W20285655272023 @default.
- W2028565527 crossrefType "journal-article" @default.
- W2028565527 hasAuthorship W2028565527A5004063906 @default.
- W2028565527 hasAuthorship W2028565527A5005679926 @default.
- W2028565527 hasAuthorship W2028565527A5036734448 @default.
- W2028565527 hasAuthorship W2028565527A5081209995 @default.
- W2028565527 hasBestOaLocation W20285655271 @default.
- W2028565527 hasConcept C104317684 @default.
- W2028565527 hasConcept C12554922 @default.
- W2028565527 hasConcept C178790620 @default.
- W2028565527 hasConcept C185592680 @default.
- W2028565527 hasConcept C2778965386 @default.
- W2028565527 hasConcept C2779281246 @default.
- W2028565527 hasConcept C44228677 @default.
- W2028565527 hasConcept C521977710 @default.
- W2028565527 hasConcept C55493867 @default.
- W2028565527 hasConcept C71240020 @default.
- W2028565527 hasConcept C86803240 @default.
- W2028565527 hasConceptScore W2028565527C104317684 @default.
- W2028565527 hasConceptScore W2028565527C12554922 @default.
- W2028565527 hasConceptScore W2028565527C178790620 @default.
- W2028565527 hasConceptScore W2028565527C185592680 @default.
- W2028565527 hasConceptScore W2028565527C2778965386 @default.
- W2028565527 hasConceptScore W2028565527C2779281246 @default.
- W2028565527 hasConceptScore W2028565527C44228677 @default.
- W2028565527 hasConceptScore W2028565527C521977710 @default.
- W2028565527 hasConceptScore W2028565527C55493867 @default.
- W2028565527 hasConceptScore W2028565527C71240020 @default.
- W2028565527 hasConceptScore W2028565527C86803240 @default.
- W2028565527 hasIssue "9" @default.
- W2028565527 hasLocation W20285655271 @default.
- W2028565527 hasOpenAccess W2028565527 @default.
- W2028565527 hasPrimaryLocation W20285655271 @default.
- W2028565527 hasRelatedWork W163124975 @default.
- W2028565527 hasRelatedWork W2009304073 @default.
- W2028565527 hasRelatedWork W2358589619 @default.
- W2028565527 hasRelatedWork W2360451741 @default.
- W2028565527 hasRelatedWork W2866955856 @default.