Matches in SemOpenAlex for { <https://semopenalex.org/work/W2028620833> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2028620833 endingPage "043011" @default.
- W2028620833 startingPage "043011" @default.
- W2028620833 abstract "We describe a new fully unsupervised image segmentation method based on a Bayesian approach and a Potts-Markov random field (PMRF) model that are performed in the wavelet domain. A Bayesian segmentation model, based on a PMRF in the direct domain, has already been successfully developed and tested. This model performs a fully unsupervised segmentation, on images composed of homogeneous regions, by introducing a hidden Markov model (HMM) for the regions to be classified, and Gaussian distributions for the noise and for the pixels pertaining to each region. The computation of the posterior laws, deduced from these a priori distributions for the pixels, is done by a Markov chain Monte Carlo (MCMC) approach and uses a Gibbs sampling algorithm. The use of a high number of iterations to reach convergence in a segmentation, where the number of segments, or classes labels, is important, makes the algorithm rather slow for the processing of a large quantity of data like image sequences. To overcome this problem, we take advantage of the property of the wavelet coefficients, in an orthogonal decomposition, to be modeled by a mixture of two Gaussians. Thus, by projecting an observable noisy image in the wavelet domain, we are able to segment, in this same domain, the wavelet subbands in only two classes. After a decomposition up to a scale J, the main idea is to segment the coarse, and small, approximation subband with a high number of classes, and to segment all the detail (wavelet) subbands with only two classes. The segmented wavelet domain coefficients are then reconstructed to obtain a final segmented image in the direct domain. Our tests on synthetic and natural images show that the segmentation quality stays good, even with noisy images, and shows that the segmentation times can be significantly reduced." @default.
- W2028620833 created "2016-06-24" @default.
- W2028620833 creator A5009416567 @default.
- W2028620833 creator A5061234480 @default.
- W2028620833 date "2005-10-01" @default.
- W2028620833 modified "2023-09-25" @default.
- W2028620833 title "Unsupervised Bayesian wavelet domain segmentation using Potts-Markov random field modeling" @default.
- W2028620833 cites W109881820 @default.
- W2028620833 cites W1481864510 @default.
- W2028620833 cites W1542333606 @default.
- W2028620833 cites W1548481688 @default.
- W2028620833 cites W1675664673 @default.
- W2028620833 cites W1965511886 @default.
- W2028620833 cites W1971784203 @default.
- W2028620833 cites W1991806859 @default.
- W2028620833 cites W2013848746 @default.
- W2028620833 cites W2020999234 @default.
- W2028620833 cites W2038948755 @default.
- W2028620833 cites W2101778102 @default.
- W2028620833 cites W2101897555 @default.
- W2028620833 cites W2111727749 @default.
- W2028620833 cites W2113945798 @default.
- W2028620833 cites W2133157898 @default.
- W2028620833 cites W2134929491 @default.
- W2028620833 cites W2149375993 @default.
- W2028620833 cites W2151658918 @default.
- W2028620833 cites W2151890896 @default.
- W2028620833 cites W2168796889 @default.
- W2028620833 cites W2169280406 @default.
- W2028620833 cites W2591023681 @default.
- W2028620833 cites W5948861 @default.
- W2028620833 doi "https://doi.org/10.1117/1.2139967" @default.
- W2028620833 hasPublicationYear "2005" @default.
- W2028620833 type Work @default.
- W2028620833 sameAs 2028620833 @default.
- W2028620833 citedByCount "2" @default.
- W2028620833 countsByYear W20286208332016 @default.
- W2028620833 crossrefType "journal-article" @default.
- W2028620833 hasAuthorship W2028620833A5009416567 @default.
- W2028620833 hasAuthorship W2028620833A5061234480 @default.
- W2028620833 hasConcept C107673813 @default.
- W2028620833 hasConcept C111350023 @default.
- W2028620833 hasConcept C11413529 @default.
- W2028620833 hasConcept C121332964 @default.
- W2028620833 hasConcept C121864883 @default.
- W2028620833 hasConcept C124504099 @default.
- W2028620833 hasConcept C153180895 @default.
- W2028620833 hasConcept C154945302 @default.
- W2028620833 hasConcept C155777637 @default.
- W2028620833 hasConcept C158424031 @default.
- W2028620833 hasConcept C196216189 @default.
- W2028620833 hasConcept C2778045648 @default.
- W2028620833 hasConcept C33923547 @default.
- W2028620833 hasConcept C41008148 @default.
- W2028620833 hasConcept C47432892 @default.
- W2028620833 hasConcept C51329190 @default.
- W2028620833 hasConcept C88829872 @default.
- W2028620833 hasConcept C89600930 @default.
- W2028620833 hasConcept C98925819 @default.
- W2028620833 hasConceptScore W2028620833C107673813 @default.
- W2028620833 hasConceptScore W2028620833C111350023 @default.
- W2028620833 hasConceptScore W2028620833C11413529 @default.
- W2028620833 hasConceptScore W2028620833C121332964 @default.
- W2028620833 hasConceptScore W2028620833C121864883 @default.
- W2028620833 hasConceptScore W2028620833C124504099 @default.
- W2028620833 hasConceptScore W2028620833C153180895 @default.
- W2028620833 hasConceptScore W2028620833C154945302 @default.
- W2028620833 hasConceptScore W2028620833C155777637 @default.
- W2028620833 hasConceptScore W2028620833C158424031 @default.
- W2028620833 hasConceptScore W2028620833C196216189 @default.
- W2028620833 hasConceptScore W2028620833C2778045648 @default.
- W2028620833 hasConceptScore W2028620833C33923547 @default.
- W2028620833 hasConceptScore W2028620833C41008148 @default.
- W2028620833 hasConceptScore W2028620833C47432892 @default.
- W2028620833 hasConceptScore W2028620833C51329190 @default.
- W2028620833 hasConceptScore W2028620833C88829872 @default.
- W2028620833 hasConceptScore W2028620833C89600930 @default.
- W2028620833 hasConceptScore W2028620833C98925819 @default.
- W2028620833 hasIssue "4" @default.
- W2028620833 hasLocation W20286208331 @default.
- W2028620833 hasLocation W20286208332 @default.
- W2028620833 hasOpenAccess W2028620833 @default.
- W2028620833 hasPrimaryLocation W20286208331 @default.
- W2028620833 hasRelatedWork W1502966458 @default.
- W2028620833 hasRelatedWork W1577789985 @default.
- W2028620833 hasRelatedWork W1974952288 @default.
- W2028620833 hasRelatedWork W2041988345 @default.
- W2028620833 hasRelatedWork W2047056993 @default.
- W2028620833 hasRelatedWork W2085792030 @default.
- W2028620833 hasRelatedWork W2112061901 @default.
- W2028620833 hasRelatedWork W2123869488 @default.
- W2028620833 hasRelatedWork W2144834862 @default.
- W2028620833 hasRelatedWork W2390482320 @default.
- W2028620833 hasVolume "14" @default.
- W2028620833 isParatext "false" @default.
- W2028620833 isRetracted "false" @default.
- W2028620833 magId "2028620833" @default.
- W2028620833 workType "article" @default.