Matches in SemOpenAlex for { <https://semopenalex.org/work/W2028656844> ?p ?o ?g. }
- W2028656844 abstract "Recent work has shown that the most stable graphene-adsorbed dimers of Fe, Co, and Ni have top-atom magnetic moments larger than those of the free dimers. Here we investigate the dependence of the binding energy and the top-atom magnetic moment upon composition, cluster size, and cluster dimensionality by considering the trimer and the tetramer, that is, the smallest two-dimensional and three-dimensional clusters, respectively. We find that for trimers the highest binding energy occurs for configurations that are perpendicularly bound and have the largest charge transfer to graphene. For tetramers, the binding energy is highest for the compact configurations with the largest charge transfer to graphene. Binding is generally strongest at the hole site of the graphene lattice. The charge transfer to graphene is mainly from the base atoms, while the $s$-$d$ orbital configuration of the top atom is close to that in the free cluster, indicating electronic shielding of the top atom from the graphene substrate. Thus, the binding energy of mixed trimers and tetramers to graphene is determined largely by the elemental identity of the base atoms, while the magnetic moment of the top atom depends on the elemental identity of the top atom. We show that graphene-adsorbed mixed clusters FeCo${}_{2}$ and FeCo${}_{3}$ with top Fe atom are strongly bound and have large top-atom magnetic moments, indicating the potential for magnetic storage applications." @default.
- W2028656844 created "2016-06-24" @default.
- W2028656844 creator A5017492105 @default.
- W2028656844 creator A5057849305 @default.
- W2028656844 creator A5077367333 @default.
- W2028656844 creator A5079114889 @default.
- W2028656844 creator A5003808545 @default.
- W2028656844 date "2011-05-18" @default.
- W2028656844 modified "2023-09-28" @default.
- W2028656844 title "Graphene-adsorbed Fe, Co, and Ni trimers and tetramers: Structure, stability, and magnetic moment" @default.
- W2028656844 cites W116118299 @default.
- W2028656844 cites W1964244117 @default.
- W2028656844 cites W1968428721 @default.
- W2028656844 cites W1973249696 @default.
- W2028656844 cites W1974887985 @default.
- W2028656844 cites W1981368803 @default.
- W2028656844 cites W1983970513 @default.
- W2028656844 cites W1984212304 @default.
- W2028656844 cites W1986583880 @default.
- W2028656844 cites W1987136222 @default.
- W2028656844 cites W1987773763 @default.
- W2028656844 cites W1988829538 @default.
- W2028656844 cites W1991164957 @default.
- W2028656844 cites W1992510538 @default.
- W2028656844 cites W1993938864 @default.
- W2028656844 cites W1995622101 @default.
- W2028656844 cites W1999447870 @default.
- W2028656844 cites W2006035385 @default.
- W2028656844 cites W2010521904 @default.
- W2028656844 cites W2010951985 @default.
- W2028656844 cites W2011849453 @default.
- W2028656844 cites W2013989703 @default.
- W2028656844 cites W2014935324 @default.
- W2028656844 cites W2019239527 @default.
- W2028656844 cites W2019377483 @default.
- W2028656844 cites W2023044921 @default.
- W2028656844 cites W2024003451 @default.
- W2028656844 cites W2031839180 @default.
- W2028656844 cites W2034480035 @default.
- W2028656844 cites W2035287960 @default.
- W2028656844 cites W2036697662 @default.
- W2028656844 cites W2037407336 @default.
- W2028656844 cites W2038551888 @default.
- W2028656844 cites W2041338617 @default.
- W2028656844 cites W2043418391 @default.
- W2028656844 cites W2044685887 @default.
- W2028656844 cites W2050315976 @default.
- W2028656844 cites W2053514922 @default.
- W2028656844 cites W2058122340 @default.
- W2028656844 cites W2063473490 @default.
- W2028656844 cites W2064885888 @default.
- W2028656844 cites W2066437638 @default.
- W2028656844 cites W2072020654 @default.
- W2028656844 cites W2075058901 @default.
- W2028656844 cites W2079054621 @default.
- W2028656844 cites W2079409908 @default.
- W2028656844 cites W2080906881 @default.
- W2028656844 cites W2081621848 @default.
- W2028656844 cites W2082512437 @default.
- W2028656844 cites W2083319357 @default.
- W2028656844 cites W2088185489 @default.
- W2028656844 cites W2091901663 @default.
- W2028656844 cites W2093652523 @default.
- W2028656844 cites W2097954826 @default.
- W2028656844 cites W2104467225 @default.
- W2028656844 cites W2120145199 @default.
- W2028656844 cites W2125877239 @default.
- W2028656844 cites W2133831282 @default.
- W2028656844 cites W2138159532 @default.
- W2028656844 cites W2156225033 @default.
- W2028656844 cites W2316207724 @default.
- W2028656844 cites W2396642146 @default.
- W2028656844 cites W4229766111 @default.
- W2028656844 cites W4239780738 @default.
- W2028656844 cites W54790904 @default.
- W2028656844 doi "https://doi.org/10.1103/physrevb.83.205408" @default.
- W2028656844 hasPublicationYear "2011" @default.
- W2028656844 type Work @default.
- W2028656844 sameAs 2028656844 @default.
- W2028656844 citedByCount "49" @default.
- W2028656844 countsByYear W20286568442012 @default.
- W2028656844 countsByYear W20286568442013 @default.
- W2028656844 countsByYear W20286568442014 @default.
- W2028656844 countsByYear W20286568442015 @default.
- W2028656844 countsByYear W20286568442016 @default.
- W2028656844 countsByYear W20286568442017 @default.
- W2028656844 countsByYear W20286568442018 @default.
- W2028656844 countsByYear W20286568442019 @default.
- W2028656844 countsByYear W20286568442020 @default.
- W2028656844 countsByYear W20286568442021 @default.
- W2028656844 countsByYear W20286568442022 @default.
- W2028656844 countsByYear W20286568442023 @default.
- W2028656844 crossrefType "journal-article" @default.
- W2028656844 hasAuthorship W2028656844A5003808545 @default.
- W2028656844 hasAuthorship W2028656844A5017492105 @default.
- W2028656844 hasAuthorship W2028656844A5057849305 @default.
- W2028656844 hasAuthorship W2028656844A5077367333 @default.
- W2028656844 hasAuthorship W2028656844A5079114889 @default.
- W2028656844 hasConcept C121332964 @default.
- W2028656844 hasConcept C149635348 @default.