Matches in SemOpenAlex for { <https://semopenalex.org/work/W2028702910> ?p ?o ?g. }
- W2028702910 endingPage "287" @default.
- W2028702910 startingPage "281" @default.
- W2028702910 abstract "Due to the fluctuation and complexity of the tourism industry, it is difficult to capture its non-stationary property and accurately describe its moving tendency. In this study, a novel forecasting model based on empirical mode decomposition (EMD) and neural network is proposed to predict tourism demand (i.e. the number of arrivals). The proposed approach first uses EMD, which can adaptively decompose the complicated raw data into a finite set of intrinsic mode functions (IMFs) and a residue, which have simpler frequency components and higher correlations. The IMF components and residue are than modeled and forecasted using back-propagation neural network (BPN) and the final forecasting value can be obtained by the sum of these prediction results. In order to evaluate the performance of the proposed approach, the majority of international visitors to Taiwan are used as illustrative examples. Experimental results show that the proposed model outperforms the single BPN model without EMD preprocessing and the traditional autoregressive integrated moving average (ARIMA) models." @default.
- W2028702910 created "2016-06-24" @default.
- W2028702910 creator A5029483860 @default.
- W2028702910 creator A5076717071 @default.
- W2028702910 creator A5080417608 @default.
- W2028702910 date "2012-02-01" @default.
- W2028702910 modified "2023-10-02" @default.
- W2028702910 title "Forecasting tourism demand based on empirical mode decomposition and neural network" @default.
- W2028702910 cites W1586335931 @default.
- W2028702910 cites W1967495926 @default.
- W2028702910 cites W1970714669 @default.
- W2028702910 cites W1978587881 @default.
- W2028702910 cites W1988518729 @default.
- W2028702910 cites W1996393715 @default.
- W2028702910 cites W2004463884 @default.
- W2028702910 cites W2006746888 @default.
- W2028702910 cites W2006926252 @default.
- W2028702910 cites W2009684895 @default.
- W2028702910 cites W2015122449 @default.
- W2028702910 cites W2017812666 @default.
- W2028702910 cites W2022349803 @default.
- W2028702910 cites W2036599383 @default.
- W2028702910 cites W2045001586 @default.
- W2028702910 cites W2050914111 @default.
- W2028702910 cites W2055173761 @default.
- W2028702910 cites W2058417559 @default.
- W2028702910 cites W2063483719 @default.
- W2028702910 cites W2067810267 @default.
- W2028702910 cites W2073004501 @default.
- W2028702910 cites W2076750860 @default.
- W2028702910 cites W2080210651 @default.
- W2028702910 cites W2098395403 @default.
- W2028702910 cites W2106665847 @default.
- W2028702910 cites W2126858141 @default.
- W2028702910 cites W2129214104 @default.
- W2028702910 cites W2166505250 @default.
- W2028702910 cites W2504704373 @default.
- W2028702910 cites W2764769393 @default.
- W2028702910 cites W2765042021 @default.
- W2028702910 doi "https://doi.org/10.1016/j.knosys.2011.09.002" @default.
- W2028702910 hasPublicationYear "2012" @default.
- W2028702910 type Work @default.
- W2028702910 sameAs 2028702910 @default.
- W2028702910 citedByCount "167" @default.
- W2028702910 countsByYear W20287029102012 @default.
- W2028702910 countsByYear W20287029102013 @default.
- W2028702910 countsByYear W20287029102014 @default.
- W2028702910 countsByYear W20287029102015 @default.
- W2028702910 countsByYear W20287029102016 @default.
- W2028702910 countsByYear W20287029102017 @default.
- W2028702910 countsByYear W20287029102018 @default.
- W2028702910 countsByYear W20287029102019 @default.
- W2028702910 countsByYear W20287029102020 @default.
- W2028702910 countsByYear W20287029102021 @default.
- W2028702910 countsByYear W20287029102022 @default.
- W2028702910 countsByYear W20287029102023 @default.
- W2028702910 crossrefType "journal-article" @default.
- W2028702910 hasAuthorship W2028702910A5029483860 @default.
- W2028702910 hasAuthorship W2028702910A5076717071 @default.
- W2028702910 hasAuthorship W2028702910A5080417608 @default.
- W2028702910 hasConcept C107457646 @default.
- W2028702910 hasConcept C112633086 @default.
- W2028702910 hasConcept C124101348 @default.
- W2028702910 hasConcept C124681953 @default.
- W2028702910 hasConcept C154945302 @default.
- W2028702910 hasConcept C17744445 @default.
- W2028702910 hasConcept C18903297 @default.
- W2028702910 hasConcept C18918823 @default.
- W2028702910 hasConcept C199539241 @default.
- W2028702910 hasConcept C25570617 @default.
- W2028702910 hasConcept C41008148 @default.
- W2028702910 hasConcept C48677424 @default.
- W2028702910 hasConcept C50644808 @default.
- W2028702910 hasConcept C76155785 @default.
- W2028702910 hasConcept C86803240 @default.
- W2028702910 hasConceptScore W2028702910C107457646 @default.
- W2028702910 hasConceptScore W2028702910C112633086 @default.
- W2028702910 hasConceptScore W2028702910C124101348 @default.
- W2028702910 hasConceptScore W2028702910C124681953 @default.
- W2028702910 hasConceptScore W2028702910C154945302 @default.
- W2028702910 hasConceptScore W2028702910C17744445 @default.
- W2028702910 hasConceptScore W2028702910C18903297 @default.
- W2028702910 hasConceptScore W2028702910C18918823 @default.
- W2028702910 hasConceptScore W2028702910C199539241 @default.
- W2028702910 hasConceptScore W2028702910C25570617 @default.
- W2028702910 hasConceptScore W2028702910C41008148 @default.
- W2028702910 hasConceptScore W2028702910C48677424 @default.
- W2028702910 hasConceptScore W2028702910C50644808 @default.
- W2028702910 hasConceptScore W2028702910C76155785 @default.
- W2028702910 hasConceptScore W2028702910C86803240 @default.
- W2028702910 hasLocation W20287029101 @default.
- W2028702910 hasOpenAccess W2028702910 @default.
- W2028702910 hasPrimaryLocation W20287029101 @default.
- W2028702910 hasRelatedWork W1991773283 @default.
- W2028702910 hasRelatedWork W1998694462 @default.
- W2028702910 hasRelatedWork W2183911703 @default.
- W2028702910 hasRelatedWork W2359972668 @default.
- W2028702910 hasRelatedWork W2373247039 @default.