Matches in SemOpenAlex for { <https://semopenalex.org/work/W2028702980> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2028702980 endingPage "129" @default.
- W2028702980 startingPage "116" @default.
- W2028702980 abstract "Abstract We report on the application of a genetic algorithm (GA) for pattern recognition that uses both supervised and transverse learning to mine spectroscopic and proteomic data. The pattern recognition GA selects features that optimize the separation of the classes in a plot of the two or three largest principal components of the data. For training sets with small amounts of labeled data (i.e. data points tagged with a class label) and large amounts of unlabeled data (i.e. data points that are not tagged with a class label), this approach is preferred, as our results show, information in the unlabeled data is used by the fitness function to guide feature selection. The advantages of incorporating transverse learning into the fitness function of the pattern recognition GA have been evaluated in two recently published studies by our group. In one study, Raman spectroscopy and the pattern recognition GA were used to develop a potential method to discriminate hardwoods, softwoods and tropical woods. In a second study, biopsy material of small round blue cell tumors analyzed by cDNA microarrays was identified as to type (Ewings sarcoma, Burkitt's lymphoma, neuroblastoma and rhabdomyosarcoma) through supervised learning implemented by the pattern recognition GA. Copyright © 2011 John Wiley & Sons, Ltd." @default.
- W2028702980 created "2016-06-24" @default.
- W2028702980 creator A5001139092 @default.
- W2028702980 creator A5021137665 @default.
- W2028702980 creator A5024886159 @default.
- W2028702980 date "2011-02-16" @default.
- W2028702980 modified "2023-10-16" @default.
- W2028702980 title "One stop shopping: feature selection, classification and prediction in a single step" @default.
- W2028702980 cites W1659842140 @default.
- W2028702980 cites W1727290854 @default.
- W2028702980 cites W1973061698 @default.
- W2028702980 cites W1987213955 @default.
- W2028702980 cites W1992541609 @default.
- W2028702980 cites W2013565030 @default.
- W2028702980 cites W2018288530 @default.
- W2028702980 cites W2021004817 @default.
- W2028702980 cites W2028370937 @default.
- W2028702980 cites W2038245432 @default.
- W2028702980 cites W2062507076 @default.
- W2028702980 cites W2071336219 @default.
- W2028702980 cites W2071411894 @default.
- W2028702980 cites W2078874695 @default.
- W2028702980 cites W2083264750 @default.
- W2028702980 cites W2084109879 @default.
- W2028702980 cites W2085516057 @default.
- W2028702980 cites W2115130496 @default.
- W2028702980 cites W2115290533 @default.
- W2028702980 cites W2119479037 @default.
- W2028702980 cites W2127369566 @default.
- W2028702980 cites W2139751160 @default.
- W2028702980 cites W2146791205 @default.
- W2028702980 cites W2156909104 @default.
- W2028702980 cites W2490800645 @default.
- W2028702980 cites W4205699531 @default.
- W2028702980 cites W4292023222 @default.
- W2028702980 cites W644895208 @default.
- W2028702980 doi "https://doi.org/10.1002/cem.1358" @default.
- W2028702980 hasPublicationYear "2011" @default.
- W2028702980 type Work @default.
- W2028702980 sameAs 2028702980 @default.
- W2028702980 citedByCount "23" @default.
- W2028702980 countsByYear W20287029802012 @default.
- W2028702980 countsByYear W20287029802014 @default.
- W2028702980 countsByYear W20287029802015 @default.
- W2028702980 countsByYear W20287029802016 @default.
- W2028702980 countsByYear W20287029802017 @default.
- W2028702980 countsByYear W20287029802018 @default.
- W2028702980 countsByYear W20287029802022 @default.
- W2028702980 countsByYear W20287029802023 @default.
- W2028702980 crossrefType "journal-article" @default.
- W2028702980 hasAuthorship W2028702980A5001139092 @default.
- W2028702980 hasAuthorship W2028702980A5021137665 @default.
- W2028702980 hasAuthorship W2028702980A5024886159 @default.
- W2028702980 hasConcept C119857082 @default.
- W2028702980 hasConcept C138885662 @default.
- W2028702980 hasConcept C148483581 @default.
- W2028702980 hasConcept C153180895 @default.
- W2028702980 hasConcept C154945302 @default.
- W2028702980 hasConcept C176066374 @default.
- W2028702980 hasConcept C2776401178 @default.
- W2028702980 hasConcept C2777212361 @default.
- W2028702980 hasConcept C41008148 @default.
- W2028702980 hasConcept C41895202 @default.
- W2028702980 hasConcept C8880873 @default.
- W2028702980 hasConceptScore W2028702980C119857082 @default.
- W2028702980 hasConceptScore W2028702980C138885662 @default.
- W2028702980 hasConceptScore W2028702980C148483581 @default.
- W2028702980 hasConceptScore W2028702980C153180895 @default.
- W2028702980 hasConceptScore W2028702980C154945302 @default.
- W2028702980 hasConceptScore W2028702980C176066374 @default.
- W2028702980 hasConceptScore W2028702980C2776401178 @default.
- W2028702980 hasConceptScore W2028702980C2777212361 @default.
- W2028702980 hasConceptScore W2028702980C41008148 @default.
- W2028702980 hasConceptScore W2028702980C41895202 @default.
- W2028702980 hasConceptScore W2028702980C8880873 @default.
- W2028702980 hasIssue "3" @default.
- W2028702980 hasLocation W20287029801 @default.
- W2028702980 hasOpenAccess W2028702980 @default.
- W2028702980 hasPrimaryLocation W20287029801 @default.
- W2028702980 hasRelatedWork W1996625429 @default.
- W2028702980 hasRelatedWork W2316780152 @default.
- W2028702980 hasRelatedWork W2374344280 @default.
- W2028702980 hasRelatedWork W2385233088 @default.
- W2028702980 hasRelatedWork W2546942002 @default.
- W2028702980 hasRelatedWork W2970216048 @default.
- W2028702980 hasRelatedWork W3163334550 @default.
- W2028702980 hasRelatedWork W3200179079 @default.
- W2028702980 hasRelatedWork W4293525103 @default.
- W2028702980 hasRelatedWork W2345184372 @default.
- W2028702980 hasVolume "25" @default.
- W2028702980 isParatext "false" @default.
- W2028702980 isRetracted "false" @default.
- W2028702980 magId "2028702980" @default.
- W2028702980 workType "article" @default.