Matches in SemOpenAlex for { <https://semopenalex.org/work/W2028725319> ?p ?o ?g. }
- W2028725319 endingPage "82" @default.
- W2028725319 startingPage "57" @default.
- W2028725319 abstract "In stable cratonised crust, the measured surface heat flow (qs) approximates the sum of the “deep” heat flux due to mantle convection (qm), and the heat flow contribution of predominantly “shallow” crust-hosted radiogenic heat production (qc). Archaean terrains worldwide are characterised by low and relatively uniform qs values (30–50 mW m−2), and the common concentration of the heat-producing elements (HPEs) K, Th and U in the upper crust means that accurate estimates of HPE abundances in the major lithological units exposed are critical to the meaningful estimation of qc. However, unit-scale geochemical datasets used for this purpose are often small and/or unevenly spatially distributed, and considerable scope exists for “average” heat production determinations that are not representative of the exposure. This study evaluates the potential of a high-resolution (400 m flight line spacing) calibrated airborne radiometric dataset to provide reasonable area-averaged heat production estimates for major Archaean granitoid complexes within the well-exposed southern East Pilbara Granite–Greenstone Terrane (EPGGT) of Western Australia. Using the available geochemical data as ground control, we show that the overall spatial and attribute accuracy of the radiometric data is high within felsic rocks for all HPEs, with 20–40% of all site comparisons yielding geochemical and radiometric values within 5% of each other. Departures from this trend are principally attributable to: (1) K depletion of the surface layer sampled by gamma-ray spectrometry, due to the mobility of K in weathering environments, and (2) U enrichment or depletion in the surface layer reflecting disequilibrium in the 238U decay chain affecting the gamma-ray response. However, both trends proved systematic and correctable at the scale of individual granitoid complexes, and we derive area-averaged heat production (H) estimates in the range 1.5–3.0 μW m−3 for the volumetrically dominant pre-2.9 Ga EPGGT granites, rising to H=4.0–6.5 μW m−3 for small, late-stage (c. 2.85 Ga) plutons. Integration of these data with independent geophysical and geochemical constraints on upper crustal structure in the EPGGT suggests that observed heat flow in the East Pilbara (qs=35–50 mW m−2) comprises qm=10–15 mW m−2 and qc=25–40 mW m−2, and this latter range shows considerable overlap with qc values deduced for many Proterozoic crustal segments worldwide. This implies that HPE abundance alone does not exert primary control on the preservation of Archaean crust, and it is likely that geologic processes that concentrate HPEs in the uppermost crust play an important role in cooling and strengthening the upper lithosphere, thereby increasing its thermal and mechanical resistance to subsequent reworking." @default.
- W2028725319 created "2016-06-24" @default.
- W2028725319 creator A5002058407 @default.
- W2028725319 creator A5026326429 @default.
- W2028725319 creator A5075358742 @default.
- W2028725319 creator A5082196586 @default.
- W2028725319 date "2004-01-01" @default.
- W2028725319 modified "2023-10-14" @default.
- W2028725319 title "A high-resolution, calibrated airborne radiometric dataset applied to the estimation of crustal heat production in the Archaean northern Pilbara Craton, Western Australia" @default.
- W2028725319 cites W1019779499 @default.
- W2028725319 cites W132815376 @default.
- W2028725319 cites W1903023940 @default.
- W2028725319 cites W1934824427 @default.
- W2028725319 cites W1969599221 @default.
- W2028725319 cites W1973012528 @default.
- W2028725319 cites W1973603014 @default.
- W2028725319 cites W1977944276 @default.
- W2028725319 cites W1979584608 @default.
- W2028725319 cites W1985149023 @default.
- W2028725319 cites W1986738852 @default.
- W2028725319 cites W1988024307 @default.
- W2028725319 cites W1989334687 @default.
- W2028725319 cites W1995115331 @default.
- W2028725319 cites W1998759187 @default.
- W2028725319 cites W2007377958 @default.
- W2028725319 cites W2009895667 @default.
- W2028725319 cites W2012177214 @default.
- W2028725319 cites W2013994979 @default.
- W2028725319 cites W2015171931 @default.
- W2028725319 cites W2018420499 @default.
- W2028725319 cites W2024833317 @default.
- W2028725319 cites W2032840455 @default.
- W2028725319 cites W2037965111 @default.
- W2028725319 cites W2038288419 @default.
- W2028725319 cites W2038812577 @default.
- W2028725319 cites W2041905619 @default.
- W2028725319 cites W2045832822 @default.
- W2028725319 cites W2048645353 @default.
- W2028725319 cites W2057887896 @default.
- W2028725319 cites W2062594643 @default.
- W2028725319 cites W2063136086 @default.
- W2028725319 cites W2065009202 @default.
- W2028725319 cites W2070682421 @default.
- W2028725319 cites W2071162807 @default.
- W2028725319 cites W2071213199 @default.
- W2028725319 cites W2073708026 @default.
- W2028725319 cites W2075538316 @default.
- W2028725319 cites W2086215220 @default.
- W2028725319 cites W2087662765 @default.
- W2028725319 cites W2091323210 @default.
- W2028725319 cites W2095548227 @default.
- W2028725319 cites W2103917644 @default.
- W2028725319 cites W2121655921 @default.
- W2028725319 cites W2123410601 @default.
- W2028725319 cites W2132706046 @default.
- W2028725319 cites W2137829824 @default.
- W2028725319 cites W2145650216 @default.
- W2028725319 cites W2145681151 @default.
- W2028725319 cites W2152210657 @default.
- W2028725319 cites W2155192741 @default.
- W2028725319 cites W2476731742 @default.
- W2028725319 cites W2775235778 @default.
- W2028725319 cites W4237004284 @default.
- W2028725319 doi "https://doi.org/10.1016/j.precamres.2003.08.008" @default.
- W2028725319 hasPublicationYear "2004" @default.
- W2028725319 type Work @default.
- W2028725319 sameAs 2028725319 @default.
- W2028725319 citedByCount "20" @default.
- W2028725319 countsByYear W20287253192013 @default.
- W2028725319 countsByYear W20287253192014 @default.
- W2028725319 countsByYear W20287253192016 @default.
- W2028725319 countsByYear W20287253192018 @default.
- W2028725319 countsByYear W20287253192019 @default.
- W2028725319 countsByYear W20287253192020 @default.
- W2028725319 countsByYear W20287253192021 @default.
- W2028725319 countsByYear W20287253192023 @default.
- W2028725319 crossrefType "journal-article" @default.
- W2028725319 hasAuthorship W2028725319A5002058407 @default.
- W2028725319 hasAuthorship W2028725319A5026326429 @default.
- W2028725319 hasAuthorship W2028725319A5075358742 @default.
- W2028725319 hasAuthorship W2028725319A5082196586 @default.
- W2028725319 hasConcept C127313418 @default.
- W2028725319 hasConcept C147717901 @default.
- W2028725319 hasConcept C149347711 @default.
- W2028725319 hasConcept C165205528 @default.
- W2028725319 hasConcept C167284885 @default.
- W2028725319 hasConcept C170187044 @default.
- W2028725319 hasConcept C17409809 @default.
- W2028725319 hasConcept C193429443 @default.
- W2028725319 hasConcept C1965285 @default.
- W2028725319 hasConcept C2776698055 @default.
- W2028725319 hasConcept C2777898519 @default.
- W2028725319 hasConcept C57016615 @default.
- W2028725319 hasConcept C67236022 @default.
- W2028725319 hasConcept C77928131 @default.
- W2028725319 hasConceptScore W2028725319C127313418 @default.
- W2028725319 hasConceptScore W2028725319C147717901 @default.
- W2028725319 hasConceptScore W2028725319C149347711 @default.