Matches in SemOpenAlex for { <https://semopenalex.org/work/W2028757055> ?p ?o ?g. }
- W2028757055 endingPage "796" @default.
- W2028757055 startingPage "769" @default.
- W2028757055 abstract "Abstract. Distributed hydrological models are valuable tools to derive distributed estimation of water balance components or to study the impact of land-use or climate change on water resources and water quality. In these models, the choice of an appropriate spatial discretization is a crucial issue. It is obviously linked to the available data, their spatial resolution and the dominant hydrological processes. For a given catchment and a given data set, the optimal spatial discretization should be adapted to the modelling objectives, as the latter determine the dominant hydrological processes considered in the modelling. For small catchments, landscape heterogeneity can be represented explicitly, whereas for large catchments such fine representation is not feasible and simplification is needed. The question is thus: is it possible to design a flexible methodology to represent landscape heterogeneity efficiently, according to the problem to be solved? This methodology should allow a controlled and objective trade-off between available data, the scale of the dominant water cycle components and the modelling objectives. In this paper, we propose a general methodology for such catchment discretization. It is based on the use of nested discretizations. The first level of discretization is composed of the sub-catchments, organised by the river network topology. The sub-catchment variability can be described using a second level of discretizations, which is called hydro-landscape units. This level of discretization is only performed if it is consistent with the modelling objectives, the active hydrological processes and data availability. The hydro-landscapes take into account different geophysical factors such as topography, land-use, pedology, but also suitable hydrological discontinuities such as ditches, hedges, dams, etc. For numerical reasons these hydro-landscapes can be further subdivided into smaller elements that will constitute the modelling units (third level of discretization). The first part of the paper presents a review about catchment discretization in hydrological models from which we derived the principles of our general methodology. The second part of the paper focuses on the derivation of hydro-landscape units for medium to large scale catchments. For this sub-catchment discretization, we propose the use of principles borrowed from landscape classification. These principles are independent of the catchment size. They allow retaining suitable features required in the catchment description in order to fulfil a specific modelling objective. The method leads to unstructured and homogeneous areas within the sub-catchments, which can be used to derive modelling meshes. It avoids map smoothing by suppressing the smallest units, the role of which can be very important in hydrology, and provides a confidence map (the distance map) for the classification. The confidence map can be used for further uncertainty analysis of modelling results. The final discretization remains consistent with the resolution of input data and that of the source maps. The last part of the paper illustrates the method using available data for the upper Saône catchment in France. The interest of the method for an efficient representation of landscape heterogeneity is illustrated by a comparison with more traditional mapping approaches. Examples of possible models, which can be built on this spatial discretization, are finally given as perspectives for the work." @default.
- W2028757055 created "2016-06-24" @default.
- W2028757055 creator A5012025297 @default.
- W2028757055 creator A5045351135 @default.
- W2028757055 date "2008-05-23" @default.
- W2028757055 modified "2023-10-16" @default.
- W2028757055 title "Which spatial discretization for distributed hydrological models? Proposition of a methodology and illustration for medium to large-scale catchments" @default.
- W2028757055 cites W1582499631 @default.
- W2028757055 cites W1616428343 @default.
- W2028757055 cites W1802734833 @default.
- W2028757055 cites W1964978950 @default.
- W2028757055 cites W1965568221 @default.
- W2028757055 cites W1965589787 @default.
- W2028757055 cites W1965899438 @default.
- W2028757055 cites W1971737273 @default.
- W2028757055 cites W1974493213 @default.
- W2028757055 cites W1975743221 @default.
- W2028757055 cites W1976410134 @default.
- W2028757055 cites W1981646498 @default.
- W2028757055 cites W1982784563 @default.
- W2028757055 cites W1987849362 @default.
- W2028757055 cites W1988563578 @default.
- W2028757055 cites W1988974989 @default.
- W2028757055 cites W1990008323 @default.
- W2028757055 cites W1992890828 @default.
- W2028757055 cites W1996836701 @default.
- W2028757055 cites W1998447689 @default.
- W2028757055 cites W1999841962 @default.
- W2028757055 cites W2002189910 @default.
- W2028757055 cites W2004387935 @default.
- W2028757055 cites W2004609727 @default.
- W2028757055 cites W2004898026 @default.
- W2028757055 cites W2007075065 @default.
- W2028757055 cites W2008186795 @default.
- W2028757055 cites W2014025454 @default.
- W2028757055 cites W2017461955 @default.
- W2028757055 cites W2020702805 @default.
- W2028757055 cites W2033181421 @default.
- W2028757055 cites W2033420593 @default.
- W2028757055 cites W2044878555 @default.
- W2028757055 cites W2046508589 @default.
- W2028757055 cites W2053514535 @default.
- W2028757055 cites W2055400861 @default.
- W2028757055 cites W2057207821 @default.
- W2028757055 cites W2058728910 @default.
- W2028757055 cites W2062660092 @default.
- W2028757055 cites W2064024543 @default.
- W2028757055 cites W2065389103 @default.
- W2028757055 cites W2068274646 @default.
- W2028757055 cites W2068307090 @default.
- W2028757055 cites W2068534605 @default.
- W2028757055 cites W2069736264 @default.
- W2028757055 cites W2073939896 @default.
- W2028757055 cites W2075108083 @default.
- W2028757055 cites W2080226292 @default.
- W2028757055 cites W2082096457 @default.
- W2028757055 cites W2084997416 @default.
- W2028757055 cites W2088362906 @default.
- W2028757055 cites W2089777064 @default.
- W2028757055 cites W2091889321 @default.
- W2028757055 cites W2093578198 @default.
- W2028757055 cites W2103106672 @default.
- W2028757055 cites W2115277898 @default.
- W2028757055 cites W2116390870 @default.
- W2028757055 cites W2119534769 @default.
- W2028757055 cites W2122267201 @default.
- W2028757055 cites W2124738823 @default.
- W2028757055 cites W2125709938 @default.
- W2028757055 cites W2129792293 @default.
- W2028757055 cites W2134131401 @default.
- W2028757055 cites W2140274930 @default.
- W2028757055 cites W2144746766 @default.
- W2028757055 cites W2149071528 @default.
- W2028757055 cites W2154689571 @default.
- W2028757055 cites W2155459485 @default.
- W2028757055 cites W2161186504 @default.
- W2028757055 cites W2162719469 @default.
- W2028757055 cites W2164959551 @default.
- W2028757055 cites W2167260850 @default.
- W2028757055 cites W2169758691 @default.
- W2028757055 cites W2804586441 @default.
- W2028757055 cites W4230074352 @default.
- W2028757055 cites W4300646223 @default.
- W2028757055 doi "https://doi.org/10.5194/hess-12-769-2008" @default.
- W2028757055 hasPublicationYear "2008" @default.
- W2028757055 type Work @default.
- W2028757055 sameAs 2028757055 @default.
- W2028757055 citedByCount "70" @default.
- W2028757055 countsByYear W20287570552013 @default.
- W2028757055 countsByYear W20287570552014 @default.
- W2028757055 countsByYear W20287570552015 @default.
- W2028757055 countsByYear W20287570552016 @default.
- W2028757055 countsByYear W20287570552017 @default.
- W2028757055 countsByYear W20287570552018 @default.
- W2028757055 countsByYear W20287570552019 @default.
- W2028757055 countsByYear W20287570552020 @default.
- W2028757055 countsByYear W20287570552021 @default.
- W2028757055 countsByYear W20287570552022 @default.