Matches in SemOpenAlex for { <https://semopenalex.org/work/W2028943022> ?p ?o ?g. }
- W2028943022 endingPage "7076" @default.
- W2028943022 startingPage "7067" @default.
- W2028943022 abstract "Employing silver nanoparticles from a recently developed synthesis [Evanoff, D. D.; Chumanov, G. J. Phys. Chem. B 2004, 108, 13948] and a well-studied probe molecule, p-aminothiophenol, we follow changes at the surface of the particles during the conditioning and eventually the catalytic production of hydrogen from water using strongly reducing radicals. Injection of electrons into the particles causes pronounced variations in the intensity of the surface enhanced Raman scattering (SERS) spectrum of the probe molecule. These spectral changes are caused by changes in the Fermi-level energy that are in turn caused by changes in the silver ion concentrations or in the pH, or by changes in electron density in the particle. This correlation highlights the effect of the chemical potential on the SERS enhancement at the end of the particles synthesis. The intensity of the SERS spectra increases in the presence of the silver ions when excitation at 514 nm is utilized. When the Ag+ ions in the colloidal suspension are completely reduced by the radicals and the particles operate in the catalytic mode, the SERS spectrum is too weak to record, but it can reversibly be recovered upon the addition of Ag+. The effect of pH on the SERS intensity is similar in nature to that of the silver ions but is complicated by the pKa of the aminothiol and the point of zero charge (pzc) of the particles. It is hypothesized that as the particles cross the pzc (around neutral pH) the electrostatic interaction between the protonated amine headgroup of the probe and the positively charged surface increases the density of probe molecules in the perpendicular orientation at the expense of a competing species. This conversion results in enhanced SERS signals and is observable during the preconditioning stage of the particles. Indeed, adsorption isotherms of the probe indicate the presence of two species. In analogous previous observations these two species have been attributed to perpendicular and flat adsorption orientations of the deprotonated probe molecule relative to the particle surface. However, preliminary density functional calculations on relevant prototypes raise the possibility that the two species may be the probe molecule and a cationic form produced by charge transfer in the ground state from the chemisorbed probe to the metal. These two forms of the probe have differing electronic structures and vibrational frequencies, with perhaps differing orientations relative to the surface. Whichever is the correct interpretation, a neutral molecule in a flat orientation or a radical cation, this species is easier to replace than the other in competitive adsorption by ethanethiol." @default.
- W2028943022 created "2016-06-24" @default.
- W2028943022 creator A5021058581 @default.
- W2028943022 creator A5024963330 @default.
- W2028943022 creator A5083105816 @default.
- W2028943022 creator A5088479281 @default.
- W2028943022 date "2008-05-08" @default.
- W2028943022 modified "2023-09-23" @default.
- W2028943022 title "Probing Silver Nanoparticles During Catalytic H<sub>2</sub> Evolution" @default.
- W2028943022 cites W1546843241 @default.
- W2028943022 cites W1965198123 @default.
- W2028943022 cites W1966182479 @default.
- W2028943022 cites W1972295548 @default.
- W2028943022 cites W1976018739 @default.
- W2028943022 cites W1980816714 @default.
- W2028943022 cites W1996979900 @default.
- W2028943022 cites W1999173254 @default.
- W2028943022 cites W2000059763 @default.
- W2028943022 cites W2001863677 @default.
- W2028943022 cites W2003602789 @default.
- W2028943022 cites W2010610604 @default.
- W2028943022 cites W2012800844 @default.
- W2028943022 cites W2014930309 @default.
- W2028943022 cites W2019454707 @default.
- W2028943022 cites W2019722364 @default.
- W2028943022 cites W2020672237 @default.
- W2028943022 cites W2025524713 @default.
- W2028943022 cites W2031706054 @default.
- W2028943022 cites W2035848365 @default.
- W2028943022 cites W2044024547 @default.
- W2028943022 cites W2045055161 @default.
- W2028943022 cites W2045734636 @default.
- W2028943022 cites W2046412723 @default.
- W2028943022 cites W2047684816 @default.
- W2028943022 cites W2049206369 @default.
- W2028943022 cites W2064547322 @default.
- W2028943022 cites W2069040023 @default.
- W2028943022 cites W2085225256 @default.
- W2028943022 cites W2085537119 @default.
- W2028943022 cites W2086568001 @default.
- W2028943022 cites W2087007517 @default.
- W2028943022 cites W2091273808 @default.
- W2028943022 cites W2094642658 @default.
- W2028943022 cites W2094938672 @default.
- W2028943022 cites W2095547289 @default.
- W2028943022 cites W2099334837 @default.
- W2028943022 cites W2115797520 @default.
- W2028943022 cites W2121830147 @default.
- W2028943022 cites W2148731096 @default.
- W2028943022 cites W2150462534 @default.
- W2028943022 cites W2164318957 @default.
- W2028943022 cites W2171581030 @default.
- W2028943022 cites W3004967862 @default.
- W2028943022 cites W3206606417 @default.
- W2028943022 doi "https://doi.org/10.1021/ja800306a" @default.
- W2028943022 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18461934" @default.
- W2028943022 hasPublicationYear "2008" @default.
- W2028943022 type Work @default.
- W2028943022 sameAs 2028943022 @default.
- W2028943022 citedByCount "47" @default.
- W2028943022 countsByYear W20289430222012 @default.
- W2028943022 countsByYear W20289430222013 @default.
- W2028943022 countsByYear W20289430222014 @default.
- W2028943022 countsByYear W20289430222015 @default.
- W2028943022 countsByYear W20289430222016 @default.
- W2028943022 countsByYear W20289430222017 @default.
- W2028943022 countsByYear W20289430222018 @default.
- W2028943022 countsByYear W20289430222019 @default.
- W2028943022 countsByYear W20289430222020 @default.
- W2028943022 countsByYear W20289430222021 @default.
- W2028943022 countsByYear W20289430222022 @default.
- W2028943022 crossrefType "journal-article" @default.
- W2028943022 hasAuthorship W2028943022A5021058581 @default.
- W2028943022 hasAuthorship W2028943022A5024963330 @default.
- W2028943022 hasAuthorship W2028943022A5083105816 @default.
- W2028943022 hasAuthorship W2028943022A5088479281 @default.
- W2028943022 hasConcept C111368507 @default.
- W2028943022 hasConcept C113196181 @default.
- W2028943022 hasConcept C120665830 @default.
- W2028943022 hasConcept C121332964 @default.
- W2028943022 hasConcept C127313418 @default.
- W2028943022 hasConcept C145148216 @default.
- W2028943022 hasConcept C155672457 @default.
- W2028943022 hasConcept C159467904 @default.
- W2028943022 hasConcept C161790260 @default.
- W2028943022 hasConcept C167080520 @default.
- W2028943022 hasConcept C169573571 @default.
- W2028943022 hasConcept C171250308 @default.
- W2028943022 hasConcept C178790620 @default.
- W2028943022 hasConcept C179104552 @default.
- W2028943022 hasConcept C185592680 @default.
- W2028943022 hasConcept C192562407 @default.
- W2028943022 hasConcept C2778517922 @default.
- W2028943022 hasConcept C30095370 @default.
- W2028943022 hasConcept C31499863 @default.
- W2028943022 hasConcept C32909587 @default.
- W2028943022 hasConcept C40003534 @default.
- W2028943022 hasConcept C75473681 @default.