Matches in SemOpenAlex for { <https://semopenalex.org/work/W2028952104> ?p ?o ?g. }
- W2028952104 endingPage "41" @default.
- W2028952104 startingPage "25" @default.
- W2028952104 abstract "Abstract Dynamic models of biological systems often possess complex and multivariate mappings between input parameters and output state variables, posing challenges for comprehensive sensitivity analysis across the biologically relevant parameter space. In particular, more efficient and robust ways to obtain a solid understanding of how the sensitivity to each parameter depends on the values of the other parameters are sorely needed. We report a new methodology for global sensitivity analysis based on Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR)-based approximations (metamodelling) of the input–output mappings of dynamic models, which we expect to be generic, efficient and robust, even for systems with highly nonlinear input–output relationships. The two-step HC-PLSR metamodelling automatically separates the observations (here corresponding to different combinations of input parameter values) into groups based on the dynamic model behaviour, then analyses each group separately with Partial Least Squares Regression (PLSR). This produces one global regression model comprising all observations, as well as regional regression models within each group, where the regression coefficients can be used as sensitivity measures. Thereby a more accurate description of complex interactions between inputs to the dynamic model can be revealed through analysis of how a certain level of one input parameter affects the model sensitivity to other inputs. We illustrate the usefulness of the HC-PLSR approach on a dynamic model of a mouse heart muscle cell, and demonstrate how it reveals interaction patterns of probable biological significance not easily identifiable by a global regression-based sensitivity analysis alone. Applied for sensitivity analysis of a complex, high-dimensional dynamic model of the mouse heart muscle cell, several interactions between input parameters were identified by the two-step HC-PLSR analysis that could not be detected in the single-step global analysis. Hence, our approach has the potential to reveal new biological insight through the identification of complex parameter interaction patterns. The HC-PLSR metamodel complexity can be adjusted according to the nonlinear complexity of the input–output mapping of the analysed dynamic model through adjustment of the number of regional regression models included. This facilitates sensitivity analysis of dynamic models of varying complexities." @default.
- W2028952104 created "2016-06-24" @default.
- W2028952104 creator A5011737941 @default.
- W2028952104 creator A5028442967 @default.
- W2028952104 creator A5065487078 @default.
- W2028952104 creator A5066133441 @default.
- W2028952104 creator A5074257695 @default.
- W2028952104 creator A5083844100 @default.
- W2028952104 date "2013-01-01" @default.
- W2028952104 modified "2023-10-10" @default.
- W2028952104 title "Hierarchical multivariate regression-based sensitivity analysis reveals complex parameter interaction patterns in dynamic models" @default.
- W2028952104 cites W1544959348 @default.
- W2028952104 cites W1889204688 @default.
- W2028952104 cites W1964131545 @default.
- W2028952104 cites W1965139977 @default.
- W2028952104 cites W1965371036 @default.
- W2028952104 cites W1966089218 @default.
- W2028952104 cites W1980498000 @default.
- W2028952104 cites W1989053944 @default.
- W2028952104 cites W2014084531 @default.
- W2028952104 cites W2038780961 @default.
- W2028952104 cites W2042948671 @default.
- W2028952104 cites W2044889656 @default.
- W2028952104 cites W2061783166 @default.
- W2028952104 cites W2075402097 @default.
- W2028952104 cites W2077073771 @default.
- W2028952104 cites W2084593711 @default.
- W2028952104 cites W2094510831 @default.
- W2028952104 cites W2098457073 @default.
- W2028952104 cites W2107191374 @default.
- W2028952104 cites W2107903523 @default.
- W2028952104 cites W2125643834 @default.
- W2028952104 cites W2148708636 @default.
- W2028952104 cites W2152407435 @default.
- W2028952104 cites W2152803686 @default.
- W2028952104 cites W2157150618 @default.
- W2028952104 cites W2163529608 @default.
- W2028952104 cites W2164430852 @default.
- W2028952104 cites W2166751342 @default.
- W2028952104 cites W3644042 @default.
- W2028952104 doi "https://doi.org/10.1016/j.chemolab.2012.10.006" @default.
- W2028952104 hasPublicationYear "2013" @default.
- W2028952104 type Work @default.
- W2028952104 sameAs 2028952104 @default.
- W2028952104 citedByCount "16" @default.
- W2028952104 countsByYear W20289521042013 @default.
- W2028952104 countsByYear W20289521042014 @default.
- W2028952104 countsByYear W20289521042015 @default.
- W2028952104 countsByYear W20289521042017 @default.
- W2028952104 countsByYear W20289521042018 @default.
- W2028952104 countsByYear W20289521042019 @default.
- W2028952104 countsByYear W20289521042021 @default.
- W2028952104 countsByYear W20289521042022 @default.
- W2028952104 crossrefType "journal-article" @default.
- W2028952104 hasAuthorship W2028952104A5011737941 @default.
- W2028952104 hasAuthorship W2028952104A5028442967 @default.
- W2028952104 hasAuthorship W2028952104A5065487078 @default.
- W2028952104 hasAuthorship W2028952104A5066133441 @default.
- W2028952104 hasAuthorship W2028952104A5074257695 @default.
- W2028952104 hasAuthorship W2028952104A5083844100 @default.
- W2028952104 hasBestOaLocation W20289521041 @default.
- W2028952104 hasConcept C105795698 @default.
- W2028952104 hasConcept C127413603 @default.
- W2028952104 hasConcept C152877465 @default.
- W2028952104 hasConcept C161584116 @default.
- W2028952104 hasConcept C21200559 @default.
- W2028952104 hasConcept C24326235 @default.
- W2028952104 hasConcept C33923547 @default.
- W2028952104 hasConcept C38180746 @default.
- W2028952104 hasConcept C41008148 @default.
- W2028952104 hasConcept C83546350 @default.
- W2028952104 hasConceptScore W2028952104C105795698 @default.
- W2028952104 hasConceptScore W2028952104C127413603 @default.
- W2028952104 hasConceptScore W2028952104C152877465 @default.
- W2028952104 hasConceptScore W2028952104C161584116 @default.
- W2028952104 hasConceptScore W2028952104C21200559 @default.
- W2028952104 hasConceptScore W2028952104C24326235 @default.
- W2028952104 hasConceptScore W2028952104C33923547 @default.
- W2028952104 hasConceptScore W2028952104C38180746 @default.
- W2028952104 hasConceptScore W2028952104C41008148 @default.
- W2028952104 hasConceptScore W2028952104C83546350 @default.
- W2028952104 hasLocation W20289521041 @default.
- W2028952104 hasOpenAccess W2028952104 @default.
- W2028952104 hasPrimaryLocation W20289521041 @default.
- W2028952104 hasRelatedWork W1570805059 @default.
- W2028952104 hasRelatedWork W1578824628 @default.
- W2028952104 hasRelatedWork W1974427739 @default.
- W2028952104 hasRelatedWork W1978174651 @default.
- W2028952104 hasRelatedWork W1978357124 @default.
- W2028952104 hasRelatedWork W2032728545 @default.
- W2028952104 hasRelatedWork W2036849593 @default.
- W2028952104 hasRelatedWork W2406638334 @default.
- W2028952104 hasRelatedWork W40745829 @default.
- W2028952104 hasRelatedWork W4318262572 @default.
- W2028952104 hasVolume "120" @default.
- W2028952104 isParatext "false" @default.
- W2028952104 isRetracted "false" @default.
- W2028952104 magId "2028952104" @default.