Matches in SemOpenAlex for { <https://semopenalex.org/work/W2028974773> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2028974773 endingPage "483" @default.
- W2028974773 startingPage "483" @default.
- W2028974773 abstract "THIS well-written book gives the usual definitions, of scalar and vector products, introduces the now familiar differential operators “div” and “rot” (or “curl”), and uses them skilfully in the simpler applications of the line, surface, and volume integrals, associated with the names of Green, Gauss, and Stokes. The necessity for vector analysis in electromagnetic work is becoming more generally recognised, and Dr. Gans deserves the thanks of all for his able presentation of the outlines of the method, which, nevertheless, is at its best a “Quaternionen-stenographie,” as C. Neumann felicitously nicknames it. One has only to compare the demonstrations here given, which are primarily Cartesian and are then transformed into the concise vector notation, with corresponding quaternion demonstrations, such as may be found in Joly's “Manual,” to see plainly the analytical gulf which separates Hamilton's calculus from other vector analyses, which are essentially shorthand notations. The mathematical historian of the future will find much food for thought in the mental shortsightedness of many vector analysts who delight in the use of contraction symbols like grad, rot, div, but despise the Hamiltonian selective symbols V and S, which with the real ∇ give the-whole theory in exquisite compactness and flexibility. On a folding sheet at the end Dr. Gans gives a table of eighteen transformation formulæ, which presumably must all be learned off by rote. There does not seem to be any resemblance among the formulæ (h), (o), (q), which give respectively the equivalents of [A[BC]], rot rot A, rot [AB]. In the quaternion notation VAVBC, V∇V∇A, V∇VAB, they are seen to be of the same “form,” and are, indeed, analytically amenable to the same treatment. This is but one illustration of the inferiority of the “Quaternionenstenographie” to the real quaternion analysis. Dr. Gans gives interesting applications in hydrodynamics and in Maxwell's electromagnetic theory, but is limited somewhat by the fact that in this introduction there is no account taken of the linear vector function or matrix." @default.
- W2028974773 created "2016-06-24" @default.
- W2028974773 creator A5035928799 @default.
- W2028974773 date "1905-09-01" @default.
- W2028974773 modified "2023-10-14" @default.
- W2028974773 title "Einführung in die Vektoranalysis mit Anwendungen auf die mathematische Physik" @default.
- W2028974773 doi "https://doi.org/10.1038/072483c0" @default.
- W2028974773 hasPublicationYear "1905" @default.
- W2028974773 type Work @default.
- W2028974773 sameAs 2028974773 @default.
- W2028974773 citedByCount "2" @default.
- W2028974773 countsByYear W20289747732012 @default.
- W2028974773 crossrefType "journal-article" @default.
- W2028974773 hasAuthorship W2028974773A5035928799 @default.
- W2028974773 hasBestOaLocation W20289747731 @default.
- W2028974773 hasConcept C136119220 @default.
- W2028974773 hasConcept C147663694 @default.
- W2028974773 hasConcept C199343813 @default.
- W2028974773 hasConcept C199360897 @default.
- W2028974773 hasConcept C202444582 @default.
- W2028974773 hasConcept C2777686260 @default.
- W2028974773 hasConcept C33923547 @default.
- W2028974773 hasConcept C41008148 @default.
- W2028974773 hasConcept C71924100 @default.
- W2028974773 hasConceptScore W2028974773C136119220 @default.
- W2028974773 hasConceptScore W2028974773C147663694 @default.
- W2028974773 hasConceptScore W2028974773C199343813 @default.
- W2028974773 hasConceptScore W2028974773C199360897 @default.
- W2028974773 hasConceptScore W2028974773C202444582 @default.
- W2028974773 hasConceptScore W2028974773C2777686260 @default.
- W2028974773 hasConceptScore W2028974773C33923547 @default.
- W2028974773 hasConceptScore W2028974773C41008148 @default.
- W2028974773 hasConceptScore W2028974773C71924100 @default.
- W2028974773 hasIssue "1872" @default.
- W2028974773 hasLocation W20289747731 @default.
- W2028974773 hasLocation W20289747732 @default.
- W2028974773 hasLocation W20289747733 @default.
- W2028974773 hasLocation W20289747734 @default.
- W2028974773 hasLocation W20289747735 @default.
- W2028974773 hasLocation W20289747736 @default.
- W2028974773 hasLocation W20289747737 @default.
- W2028974773 hasOpenAccess W2028974773 @default.
- W2028974773 hasPrimaryLocation W20289747731 @default.
- W2028974773 hasRelatedWork W1557945163 @default.
- W2028974773 hasRelatedWork W1912064545 @default.
- W2028974773 hasRelatedWork W1985218657 @default.
- W2028974773 hasRelatedWork W2023661790 @default.
- W2028974773 hasRelatedWork W2096753949 @default.
- W2028974773 hasRelatedWork W2742285599 @default.
- W2028974773 hasRelatedWork W2963341196 @default.
- W2028974773 hasRelatedWork W3106133691 @default.
- W2028974773 hasRelatedWork W3124205579 @default.
- W2028974773 hasRelatedWork W4249580765 @default.
- W2028974773 hasVolume "72" @default.
- W2028974773 isParatext "false" @default.
- W2028974773 isRetracted "false" @default.
- W2028974773 magId "2028974773" @default.
- W2028974773 workType "article" @default.