Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029041540> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2029041540 endingPage "2281" @default.
- W2029041540 startingPage "2279" @default.
- W2029041540 abstract "Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper F colon double-struck upper C Superscript n Baseline right-arrow double-struck upper C Superscript n> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>C</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo stretchy=false>→<!-- → --></mml:mo> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>C</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>F:mathbb {C}^n rightarrow mathbb {C}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a polynomial mapping in Yagzhev form, i.e. <disp-formula content-type=math/mathml> [ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper F left-parenthesis x 1 comma ellipsis comma x Subscript n Baseline right-parenthesis equals left-parenthesis x 1 plus upper H 1 left-parenthesis x 1 comma ellipsis comma x Subscript n Baseline right-parenthesis comma ellipsis comma x Subscript n Baseline plus upper H Subscript n Baseline left-parenthesis x 1 comma ellipsis comma x Subscript n Baseline right-parenthesis right-parenthesis comma> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy=false>)</mml:mo> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy=false>)</mml:mo> <mml:mo stretchy=false>)</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>F(x_1,ldots ,x_n)=(x_1+H_1(x_1,ldots ,x_n),ldots ,x_n+H_n(x_1,ldots ,x_n)),</mml:annotation> </mml:semantics> </mml:math> ] </disp-formula> where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H Subscript i> <mml:semantics> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>H_i</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are homogeneous polynomials of degree 3. We show that if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper J normal a normal c left-parenthesis upper F right-parenthesis element-of double-struck upper C Superscript asterisk> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>J</mml:mi> <mml:mi mathvariant=normal>a</mml:mi> <mml:mi mathvariant=normal>c</mml:mi> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>F</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>C</mml:mi> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>mathrm {Jac}(F) in mathbb {C}^*</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the Jacobian matrix of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper F> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding=application/x-tex>F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is symmetric, then the polynomials <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=x Subscript i Baseline plus upper H Subscript i Baseline left-parenthesis x 1 comma ellipsis comma x Subscript n Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>x_i+H_i(x_1,ldots ,x_n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are irreducible as elements of the ring <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper C left-bracket x 1 comma ellipsis comma x Subscript n Baseline right-bracket> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>C</mml:mi> </mml:mrow> <mml:mo stretchy=false>[</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy=false>]</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {C}[x_1,ldots ,x_n]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>." @default.
- W2029041540 created "2016-06-24" @default.
- W2029041540 creator A5012108275 @default.
- W2029041540 date "2010-03-10" @default.
- W2029041540 modified "2023-09-27" @default.
- W2029041540 title "The irreducibility of symmetric Yagzhev maps" @default.
- W2029041540 cites W1583189483 @default.
- W2029041540 cites W2015501897 @default.
- W2029041540 cites W2035280681 @default.
- W2029041540 cites W2046712067 @default.
- W2029041540 cites W2081461845 @default.
- W2029041540 doi "https://doi.org/10.1090/s0002-9939-10-10109-9" @default.
- W2029041540 hasPublicationYear "2010" @default.
- W2029041540 type Work @default.
- W2029041540 sameAs 2029041540 @default.
- W2029041540 citedByCount "2" @default.
- W2029041540 countsByYear W20290415402016 @default.
- W2029041540 countsByYear W20290415402019 @default.
- W2029041540 crossrefType "journal-article" @default.
- W2029041540 hasAuthorship W2029041540A5012108275 @default.
- W2029041540 hasBestOaLocation W20290415401 @default.
- W2029041540 hasConcept C11413529 @default.
- W2029041540 hasConcept C138885662 @default.
- W2029041540 hasConcept C154945302 @default.
- W2029041540 hasConcept C185592680 @default.
- W2029041540 hasConcept C2776542307 @default.
- W2029041540 hasConcept C33923547 @default.
- W2029041540 hasConcept C41008148 @default.
- W2029041540 hasConcept C41895202 @default.
- W2029041540 hasConcept C8010536 @default.
- W2029041540 hasConceptScore W2029041540C11413529 @default.
- W2029041540 hasConceptScore W2029041540C138885662 @default.
- W2029041540 hasConceptScore W2029041540C154945302 @default.
- W2029041540 hasConceptScore W2029041540C185592680 @default.
- W2029041540 hasConceptScore W2029041540C2776542307 @default.
- W2029041540 hasConceptScore W2029041540C33923547 @default.
- W2029041540 hasConceptScore W2029041540C41008148 @default.
- W2029041540 hasConceptScore W2029041540C41895202 @default.
- W2029041540 hasConceptScore W2029041540C8010536 @default.
- W2029041540 hasIssue "7" @default.
- W2029041540 hasLocation W20290415401 @default.
- W2029041540 hasOpenAccess W2029041540 @default.
- W2029041540 hasPrimaryLocation W20290415401 @default.
- W2029041540 hasRelatedWork W2169996260 @default.
- W2029041540 hasRelatedWork W2357322933 @default.
- W2029041540 hasRelatedWork W2357839234 @default.
- W2029041540 hasRelatedWork W2364713684 @default.
- W2029041540 hasRelatedWork W2366383148 @default.
- W2029041540 hasRelatedWork W2376250058 @default.
- W2029041540 hasRelatedWork W2384022429 @default.
- W2029041540 hasRelatedWork W2389001606 @default.
- W2029041540 hasRelatedWork W4206632963 @default.
- W2029041540 hasRelatedWork W4248689280 @default.
- W2029041540 hasVolume "138" @default.
- W2029041540 isParatext "false" @default.
- W2029041540 isRetracted "false" @default.
- W2029041540 magId "2029041540" @default.
- W2029041540 workType "article" @default.