Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029043403> ?p ?o ?g. }
- W2029043403 abstract "In order to make an effective droplet-based microfluidic device, one must be able to precisely control a number of key processes including droplet positioning, motion, coalescence, mixing, and sorting. In a typical three-dimensional device, these processes are well understood. However, for planar or open microfluidic devices, many of these processes have yet to be demonstrated. In this paper, a series of superhydrophobic surfaces created by sanding Teflon are used as the microfluidics platform. The superhydrophobic surfaces used in this study all have advancing contact angles of 150° but have contact angle hysteresis that were varied smoothly from 3° to 30° as the grit size of the sandpaper is changed. Drop motion was initiated by placing the surface on an inclined plane. To deflect and move droplets along the surface, single and multiple transition lines in receding contact angle were created by spatially varying the surface roughness of the Teflon. The degree of droplet deflection was studied as a function of droplet size, droplet speed, and the angle that the transition line in contact angle hysteresis made with the principle direction of droplet motion. Droplet deflections across a single transition as large as 140% the droplet diameter were observed. The droplet deflection was found to increase with increasing difference in contact angle hysteresis across the transition and increasing transition angles up to about 40°. The largest deflections were observed over a very narrow range of droplet velocities corresponding to a range in Weber numbers between 0.1 and 0.2. This narrow range in Weber number suggests that transitions in receding contact angle can be used to sort drops based on velocity, size or wetting properties with a strong degree of selectivity. The direction of deflection was observed to change depending on whether the drops transitioned from a region of low to high or high to low contact angle hysteresis. In a transition from low to high hysteresis, a large portion of the drop's kinetic energy is converted into interfacial energy as the receding contact line of the drop is deformed. Alternatively, a transition from high to low hysteresis results in some of the drop's interfacial energy converted into kinetic energy as the deformation of the droplet is reduced. The result is either a reduction or increase in the droplet's velocity normal to the line of transition depending on the sign of the transition in contact angle hysteresis. Finally, single and multiple stripes of different contact angle hysteresis are also shown to be effective at deflecting droplets." @default.
- W2029043403 created "2016-06-24" @default.
- W2029043403 creator A5054352776 @default.
- W2029043403 creator A5089604205 @default.
- W2029043403 date "2012-06-01" @default.
- W2029043403 modified "2023-09-30" @default.
- W2029043403 title "Using sharp transitions in contact angle hysteresis to move, deflect, and sort droplets on a superhydrophobic surface" @default.
- W2029043403 cites W1562528808 @default.
- W2029043403 cites W1975140804 @default.
- W2029043403 cites W1977924009 @default.
- W2029043403 cites W1983084194 @default.
- W2029043403 cites W1989346050 @default.
- W2029043403 cites W1993504981 @default.
- W2029043403 cites W1995622382 @default.
- W2029043403 cites W2003026545 @default.
- W2029043403 cites W2013117405 @default.
- W2029043403 cites W2020438216 @default.
- W2029043403 cites W2031107894 @default.
- W2029043403 cites W2036667894 @default.
- W2029043403 cites W2048197073 @default.
- W2029043403 cites W2050662540 @default.
- W2029043403 cites W2058743369 @default.
- W2029043403 cites W2058825130 @default.
- W2029043403 cites W2063600666 @default.
- W2029043403 cites W2068561631 @default.
- W2029043403 cites W2076849099 @default.
- W2029043403 cites W2083434296 @default.
- W2029043403 cites W2084807890 @default.
- W2029043403 cites W2086187432 @default.
- W2029043403 cites W2095217690 @default.
- W2029043403 cites W2109940041 @default.
- W2029043403 cites W2113064266 @default.
- W2029043403 cites W2125817748 @default.
- W2029043403 cites W2133428950 @default.
- W2029043403 cites W2152123134 @default.
- W2029043403 cites W2160110707 @default.
- W2029043403 cites W2163759605 @default.
- W2029043403 cites W2167712633 @default.
- W2029043403 cites W4206997528 @default.
- W2029043403 cites W4238503981 @default.
- W2029043403 cites W4253896026 @default.
- W2029043403 doi "https://doi.org/10.1063/1.4723866" @default.
- W2029043403 hasPublicationYear "2012" @default.
- W2029043403 type Work @default.
- W2029043403 sameAs 2029043403 @default.
- W2029043403 citedByCount "31" @default.
- W2029043403 countsByYear W20290434032012 @default.
- W2029043403 countsByYear W20290434032013 @default.
- W2029043403 countsByYear W20290434032014 @default.
- W2029043403 countsByYear W20290434032015 @default.
- W2029043403 countsByYear W20290434032016 @default.
- W2029043403 countsByYear W20290434032017 @default.
- W2029043403 countsByYear W20290434032018 @default.
- W2029043403 countsByYear W20290434032019 @default.
- W2029043403 countsByYear W20290434032020 @default.
- W2029043403 countsByYear W20290434032021 @default.
- W2029043403 countsByYear W20290434032022 @default.
- W2029043403 countsByYear W20290434032023 @default.
- W2029043403 crossrefType "journal-article" @default.
- W2029043403 hasAuthorship W2029043403A5054352776 @default.
- W2029043403 hasAuthorship W2029043403A5089604205 @default.
- W2029043403 hasConcept C107365816 @default.
- W2029043403 hasConcept C120665830 @default.
- W2029043403 hasConcept C121332964 @default.
- W2029043403 hasConcept C123299182 @default.
- W2029043403 hasConcept C127413603 @default.
- W2029043403 hasConcept C134514944 @default.
- W2029043403 hasConcept C149792144 @default.
- W2029043403 hasConcept C159985019 @default.
- W2029043403 hasConcept C171250308 @default.
- W2029043403 hasConcept C185592680 @default.
- W2029043403 hasConcept C192562407 @default.
- W2029043403 hasConcept C26873012 @default.
- W2029043403 hasConcept C2778067163 @default.
- W2029043403 hasConcept C2778123984 @default.
- W2029043403 hasConcept C2781345722 @default.
- W2029043403 hasConcept C2781355719 @default.
- W2029043403 hasConcept C55493867 @default.
- W2029043403 hasConcept C57879066 @default.
- W2029043403 hasConcept C6556556 @default.
- W2029043403 hasConcept C7500180 @default.
- W2029043403 hasConcept C78519656 @default.
- W2029043403 hasConcept C8673954 @default.
- W2029043403 hasConcept C87355193 @default.
- W2029043403 hasConceptScore W2029043403C107365816 @default.
- W2029043403 hasConceptScore W2029043403C120665830 @default.
- W2029043403 hasConceptScore W2029043403C121332964 @default.
- W2029043403 hasConceptScore W2029043403C123299182 @default.
- W2029043403 hasConceptScore W2029043403C127413603 @default.
- W2029043403 hasConceptScore W2029043403C134514944 @default.
- W2029043403 hasConceptScore W2029043403C149792144 @default.
- W2029043403 hasConceptScore W2029043403C159985019 @default.
- W2029043403 hasConceptScore W2029043403C171250308 @default.
- W2029043403 hasConceptScore W2029043403C185592680 @default.
- W2029043403 hasConceptScore W2029043403C192562407 @default.
- W2029043403 hasConceptScore W2029043403C26873012 @default.
- W2029043403 hasConceptScore W2029043403C2778067163 @default.
- W2029043403 hasConceptScore W2029043403C2778123984 @default.
- W2029043403 hasConceptScore W2029043403C2781345722 @default.
- W2029043403 hasConceptScore W2029043403C2781355719 @default.