Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029079600> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2029079600 endingPage "200" @default.
- W2029079600 startingPage "191" @default.
- W2029079600 abstract "Techniques extracting topics from dynamic Internet are relatively matured. However, people cannot accurately predict topic trend so far. Unfortunately, for prediction of topic trend, the availability of data is always very limited owing to the short life circle of topics, especially in such a highly efficient and fast-paced era. Based on Grey Verhulst Model, the paper presents an algorithm to predict topics trend. The principle of Grey Model for prediction application is analyzed and Grey Verhulst Model is established. In the meanwhile, real-world data from Youku (the largest video site in China and something like YouTube) is applied to test our presented algorithm. The average relative error of Grey Verhulst Model is less than 3%. The results show that Grey Verhulst Model has a higher prediction precision. The main contributions of this paper are as follows. First, we introduce Grey System Theory (GST) originated from system theory to the prediction of topics trend and to some extent, solve the problem with a high accuracy; second, to the best of our knowledge, it is the first attempt to employ GST in the field of topic trend prediction." @default.
- W2029079600 created "2016-06-24" @default.
- W2029079600 creator A5040753005 @default.
- W2029079600 creator A5054524412 @default.
- W2029079600 creator A5062307604 @default.
- W2029079600 creator A5074014221 @default.
- W2029079600 creator A5079687376 @default.
- W2029079600 date "2014-03-01" @default.
- W2029079600 modified "2023-09-30" @default.
- W2029079600 title "Grey System Theory based prediction for topic trend on Internet" @default.
- W2029079600 cites W1481847702 @default.
- W2029079600 cites W1963966177 @default.
- W2029079600 cites W1964768963 @default.
- W2029079600 cites W1967028511 @default.
- W2029079600 cites W1970043789 @default.
- W2029079600 cites W1975594954 @default.
- W2029079600 cites W1982591036 @default.
- W2029079600 cites W1989533819 @default.
- W2029079600 cites W1995246960 @default.
- W2029079600 cites W2010788558 @default.
- W2029079600 cites W2011095560 @default.
- W2029079600 cites W2013377700 @default.
- W2029079600 cites W2049451480 @default.
- W2029079600 cites W2059355176 @default.
- W2029079600 cites W2067514909 @default.
- W2029079600 cites W2067663090 @default.
- W2029079600 cites W2072307882 @default.
- W2029079600 cites W2076298069 @default.
- W2029079600 cites W2101726346 @default.
- W2029079600 cites W2106211940 @default.
- W2029079600 cites W2112924845 @default.
- W2029079600 cites W2114431967 @default.
- W2029079600 cites W2132782512 @default.
- W2029079600 cites W2143818143 @default.
- W2029079600 cites W2166354010 @default.
- W2029079600 cites W3122213344 @default.
- W2029079600 cites W3122796275 @default.
- W2029079600 cites W4210614061 @default.
- W2029079600 cites W55407398 @default.
- W2029079600 doi "https://doi.org/10.1016/j.engappai.2013.12.005" @default.
- W2029079600 hasPublicationYear "2014" @default.
- W2029079600 type Work @default.
- W2029079600 sameAs 2029079600 @default.
- W2029079600 citedByCount "45" @default.
- W2029079600 countsByYear W20290796002014 @default.
- W2029079600 countsByYear W20290796002015 @default.
- W2029079600 countsByYear W20290796002016 @default.
- W2029079600 countsByYear W20290796002017 @default.
- W2029079600 countsByYear W20290796002018 @default.
- W2029079600 countsByYear W20290796002019 @default.
- W2029079600 countsByYear W20290796002020 @default.
- W2029079600 countsByYear W20290796002021 @default.
- W2029079600 countsByYear W20290796002022 @default.
- W2029079600 countsByYear W20290796002023 @default.
- W2029079600 crossrefType "journal-article" @default.
- W2029079600 hasAuthorship W2029079600A5040753005 @default.
- W2029079600 hasAuthorship W2029079600A5054524412 @default.
- W2029079600 hasAuthorship W2029079600A5062307604 @default.
- W2029079600 hasAuthorship W2029079600A5074014221 @default.
- W2029079600 hasAuthorship W2029079600A5079687376 @default.
- W2029079600 hasConcept C110875604 @default.
- W2029079600 hasConcept C119857082 @default.
- W2029079600 hasConcept C124101348 @default.
- W2029079600 hasConcept C136764020 @default.
- W2029079600 hasConcept C154945302 @default.
- W2029079600 hasConcept C41008148 @default.
- W2029079600 hasConceptScore W2029079600C110875604 @default.
- W2029079600 hasConceptScore W2029079600C119857082 @default.
- W2029079600 hasConceptScore W2029079600C124101348 @default.
- W2029079600 hasConceptScore W2029079600C136764020 @default.
- W2029079600 hasConceptScore W2029079600C154945302 @default.
- W2029079600 hasConceptScore W2029079600C41008148 @default.
- W2029079600 hasLocation W20290796001 @default.
- W2029079600 hasOpenAccess W2029079600 @default.
- W2029079600 hasPrimaryLocation W20290796001 @default.
- W2029079600 hasRelatedWork W1871685927 @default.
- W2029079600 hasRelatedWork W2961085424 @default.
- W2029079600 hasRelatedWork W3046775127 @default.
- W2029079600 hasRelatedWork W3170094116 @default.
- W2029079600 hasRelatedWork W3209574120 @default.
- W2029079600 hasRelatedWork W4205958290 @default.
- W2029079600 hasRelatedWork W4286629047 @default.
- W2029079600 hasRelatedWork W4306321456 @default.
- W2029079600 hasRelatedWork W4306674287 @default.
- W2029079600 hasRelatedWork W4224009465 @default.
- W2029079600 hasVolume "29" @default.
- W2029079600 isParatext "false" @default.
- W2029079600 isRetracted "false" @default.
- W2029079600 magId "2029079600" @default.
- W2029079600 workType "article" @default.