Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029087609> ?p ?o ?g. }
- W2029087609 endingPage "506" @default.
- W2029087609 startingPage "488" @default.
- W2029087609 abstract "An efficient methodology, further referred to as ICM, for versatile modeling operations and global energy optimization on arbitrarily fixed multimolecular systems is described. It is aimed at protein structure prediction, homology modeling, molecular docking, nuclear magnetic resonance (NMR) structure determination, and protein design. The method uses and further develops a previously introduced approach to model biomolecular structures in which bond lengths, bond angles, and torsion angles are considered as independent variables, any subset of them being fixed. Here we simplify and generalize the basic description of the system, introduce the variable dihedral phase angle, and allow arbitrary connections of the molecules and conventional definition of the torsion angles. Algorithms for calculation of energy derivatives with respect to internal variables in the topological tree of the system and for rapid evaluation of accessible surface are presented. Multidimensional variable restraints are proposed to represent the statistical information about the torsion angle distributions in proteins. To incorporate complex energy terms as solvation energy and electrostatics into a structure prediction procedure, a “double-energy” Monte Carlo minimization procedure in which these terms are omitted during the minimization stage of the random step and included for the comparison with the previous conformation in a Markov chain is proposed and justified. The ICM method is applied successfully to a molecular docking problem. The procedure finds the correct parallel arrangement of two rigid helixes from a leucine zipper domain as the lowest-energy conformation (0.5 Å root mean square, rms, deviation from the native structure) starting from completely random configuration. Structures with antiparallel helixes or helixes staggered by one helix turn had energies higher by about 7 or 9 kcal/mol, respectively. Soft docking was also attempted. A docking procedure allowing side-chain flexibility also converged to the parallel configuration starting from the helixes optimized individually. To justdy an internal coordinate approach to the structure prediction as opposed to a Cartesian one, energy hypersurfaces around the native structure of the squash seeds trypsin inhibitor were studied. Torsion angle minimization from the optimal conformation randomly distorted up to the rms deviation of 2.2 Å or angular rms deviation of l0° restored the native conformation in most cases. In contrast, Cartesian coordinate minimization did not reach the minimum from deviations as small as 0.3 Å or 2°. We conclude that the most promising detailed approach to the protein-folding problem would consist of some coarse global sampling strategy combined with the local energy minimization in the torsion coordinate space. © 1994 by John Wiley & Sons, Inc." @default.
- W2029087609 created "2016-06-24" @default.
- W2029087609 creator A5064101943 @default.
- W2029087609 creator A5070322806 @default.
- W2029087609 creator A5075200215 @default.
- W2029087609 date "1994-05-01" @default.
- W2029087609 modified "2023-10-10" @default.
- W2029087609 title "ICM?A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation" @default.
- W2029087609 cites W1584189892 @default.
- W2029087609 cites W1600524405 @default.
- W2029087609 cites W1787604457 @default.
- W2029087609 cites W1966041739 @default.
- W2029087609 cites W1970379663 @default.
- W2029087609 cites W1970658820 @default.
- W2029087609 cites W1974977468 @default.
- W2029087609 cites W1979046104 @default.
- W2029087609 cites W1990806874 @default.
- W2029087609 cites W1994830533 @default.
- W2029087609 cites W1997814593 @default.
- W2029087609 cites W2001130582 @default.
- W2029087609 cites W2001900040 @default.
- W2029087609 cites W2003542620 @default.
- W2029087609 cites W2003664832 @default.
- W2029087609 cites W2005651680 @default.
- W2029087609 cites W2009071542 @default.
- W2029087609 cites W2013785414 @default.
- W2029087609 cites W2014329720 @default.
- W2029087609 cites W2017515564 @default.
- W2029087609 cites W2019476648 @default.
- W2029087609 cites W2022284509 @default.
- W2029087609 cites W2025947203 @default.
- W2029087609 cites W2027638447 @default.
- W2029087609 cites W2027978582 @default.
- W2029087609 cites W2030470356 @default.
- W2029087609 cites W2034126246 @default.
- W2029087609 cites W2043382734 @default.
- W2029087609 cites W2045192978 @default.
- W2029087609 cites W2054063694 @default.
- W2029087609 cites W2056063299 @default.
- W2029087609 cites W2056760934 @default.
- W2029087609 cites W2056911218 @default.
- W2029087609 cites W2060100446 @default.
- W2029087609 cites W2061346531 @default.
- W2029087609 cites W2063074006 @default.
- W2029087609 cites W2063753591 @default.
- W2029087609 cites W2064232089 @default.
- W2029087609 cites W2069142614 @default.
- W2029087609 cites W2073082810 @default.
- W2029087609 cites W2079589162 @default.
- W2029087609 cites W2081588627 @default.
- W2029087609 cites W2089474727 @default.
- W2029087609 cites W2112903372 @default.
- W2029087609 cites W2132456736 @default.
- W2029087609 cites W2136373084 @default.
- W2029087609 cites W2138132608 @default.
- W2029087609 cites W2158528894 @default.
- W2029087609 cites W2162166182 @default.
- W2029087609 cites W2369265493 @default.
- W2029087609 cites W3021550876 @default.
- W2029087609 doi "https://doi.org/10.1002/jcc.540150503" @default.
- W2029087609 hasPublicationYear "1994" @default.
- W2029087609 type Work @default.
- W2029087609 sameAs 2029087609 @default.
- W2029087609 citedByCount "1451" @default.
- W2029087609 countsByYear W20290876092012 @default.
- W2029087609 countsByYear W20290876092013 @default.
- W2029087609 countsByYear W20290876092014 @default.
- W2029087609 countsByYear W20290876092015 @default.
- W2029087609 countsByYear W20290876092016 @default.
- W2029087609 countsByYear W20290876092017 @default.
- W2029087609 countsByYear W20290876092018 @default.
- W2029087609 countsByYear W20290876092019 @default.
- W2029087609 countsByYear W20290876092020 @default.
- W2029087609 countsByYear W20290876092021 @default.
- W2029087609 countsByYear W20290876092022 @default.
- W2029087609 countsByYear W20290876092023 @default.
- W2029087609 crossrefType "journal-article" @default.
- W2029087609 hasAuthorship W2029087609A5064101943 @default.
- W2029087609 hasAuthorship W2029087609A5070322806 @default.
- W2029087609 hasAuthorship W2029087609A5075200215 @default.
- W2029087609 hasConcept C105795698 @default.
- W2029087609 hasConcept C112887158 @default.
- W2029087609 hasConcept C11413529 @default.
- W2029087609 hasConcept C116887118 @default.
- W2029087609 hasConcept C121332964 @default.
- W2029087609 hasConcept C121864883 @default.
- W2029087609 hasConcept C141071460 @default.
- W2029087609 hasConcept C14301744 @default.
- W2029087609 hasConcept C147597530 @default.
- W2029087609 hasConcept C14961307 @default.
- W2029087609 hasConcept C159110408 @default.
- W2029087609 hasConcept C18051474 @default.
- W2029087609 hasConcept C185592680 @default.
- W2029087609 hasConcept C19499675 @default.
- W2029087609 hasConcept C32909587 @default.
- W2029087609 hasConcept C33923547 @default.
- W2029087609 hasConcept C41008148 @default.
- W2029087609 hasConcept C41685203 @default.