Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029125051> ?p ?o ?g. }
- W2029125051 endingPage "583" @default.
- W2029125051 startingPage "571" @default.
- W2029125051 abstract "A subduction shear zone can be modeled as a long narrow channel, with the flow of subducted metasedimentary rocks in the channel driven by two sets of forces: the downward shearing force exerted by the subducting slab and the gradient in the hydraulic potential, which combines the effect of both pressure and buoyancy. If the channel walls are effectively rigid, very slight narrowing or broadening of the channel (convergence angles <1°) can result in very dramatic changes in the (nonlithostatic) pressure distribution along the channel. The geometry of the subducting plate, which is forced to bend under the overriding plate, suggests that the channel should initially narrow downward and then gradually broaden. A model assuming this geometry, with initial channel width 1500 m, minimum width ∼600 m and width at 100 km depth of again ∼1500 m, a maximum viscosity of 10 19 Pa s, and a convergence rate of 8 cm/yr reaches pressures >2 GPa in the channel at only 40 km depth. The model is consistent with a horizontal balance of forces across the plates and with a reasonable value for the thickness of subducted sediment (∼650 m). The practical limit for overpressures attainable in subduction zones is determined by the strength and permeability of the channel walls. At 40 km depth the channel is effectively confined on both sides by cold lithospheric mantle, which should be strong enough to support a significant tectonic overpressure. Episodic failure of the upper plate to produce great earthquakes at 30–40 km focal depth could vent overpressured fluid from the channel, allowing a cyclical buildup and release of both rock and fluid pressure. Topography on the subducting plate (e.g., seamounts and thinned continental crust) may lead to an anvil‐like jamming of the channel and local high overpressures. Tectonic erosion by topography on the lower plate of slivers from overlying continental crust and the compression of these slivers between the topography and the narrowing channel walls could produce high overpressures in continental rocks. A decrease in the convergence rate or cessation of subduction, with a consequent general warming within the channel and associated viscosity decrease, promotes exhumation by buoyant reverse flow. The most rapid reverse flow occurs in the region of previously greatest overpressure. Since the exhumation distance is shorter than for a simple lithostatic pressure distribution and any increase in temperature is coupled with a strong increase in the rate of exhumation, preservation of high‐pressure assemblages at the surface in fossil subduction zones is promoted for such a model." @default.
- W2029125051 created "2016-06-24" @default.
- W2029125051 creator A5007726741 @default.
- W2029125051 date "1995-01-10" @default.
- W2029125051 modified "2023-09-27" @default.
- W2029125051 title "Nonlithostatic pressure during sediment subduction and the development and exhumation of high pressure metamorphic rocks" @default.
- W2029125051 cites W1966610015 @default.
- W2029125051 cites W1968099496 @default.
- W2029125051 cites W1972004926 @default.
- W2029125051 cites W1986474988 @default.
- W2029125051 cites W1989905077 @default.
- W2029125051 cites W1994847309 @default.
- W2029125051 cites W1998850284 @default.
- W2029125051 cites W2000508370 @default.
- W2029125051 cites W2002564573 @default.
- W2029125051 cites W2003301530 @default.
- W2029125051 cites W2014390311 @default.
- W2029125051 cites W2014812434 @default.
- W2029125051 cites W2021714816 @default.
- W2029125051 cites W2032764136 @default.
- W2029125051 cites W2033150807 @default.
- W2029125051 cites W2036475683 @default.
- W2029125051 cites W2040227616 @default.
- W2029125051 cites W2041126896 @default.
- W2029125051 cites W2042012543 @default.
- W2029125051 cites W2046227090 @default.
- W2029125051 cites W2047230097 @default.
- W2029125051 cites W2048742589 @default.
- W2029125051 cites W2056259282 @default.
- W2029125051 cites W2058947049 @default.
- W2029125051 cites W2062578168 @default.
- W2029125051 cites W2062974751 @default.
- W2029125051 cites W2064662137 @default.
- W2029125051 cites W2077642465 @default.
- W2029125051 cites W2078283824 @default.
- W2029125051 cites W2081862473 @default.
- W2029125051 cites W2083877973 @default.
- W2029125051 cites W2092464363 @default.
- W2029125051 cites W2122264945 @default.
- W2029125051 cites W2134102438 @default.
- W2029125051 cites W2139085903 @default.
- W2029125051 cites W2142999655 @default.
- W2029125051 cites W2146147563 @default.
- W2029125051 cites W2148232034 @default.
- W2029125051 cites W2154315792 @default.
- W2029125051 cites W2331687343 @default.
- W2029125051 cites W2337588041 @default.
- W2029125051 cites W2976982773 @default.
- W2029125051 cites W4210999665 @default.
- W2029125051 doi "https://doi.org/10.1029/94jb02158" @default.
- W2029125051 hasPublicationYear "1995" @default.
- W2029125051 type Work @default.
- W2029125051 sameAs 2029125051 @default.
- W2029125051 citedByCount "119" @default.
- W2029125051 countsByYear W20291250512012 @default.
- W2029125051 countsByYear W20291250512013 @default.
- W2029125051 countsByYear W20291250512014 @default.
- W2029125051 countsByYear W20291250512015 @default.
- W2029125051 countsByYear W20291250512016 @default.
- W2029125051 countsByYear W20291250512017 @default.
- W2029125051 countsByYear W20291250512018 @default.
- W2029125051 countsByYear W20291250512019 @default.
- W2029125051 countsByYear W20291250512020 @default.
- W2029125051 countsByYear W20291250512021 @default.
- W2029125051 countsByYear W20291250512022 @default.
- W2029125051 countsByYear W20291250512023 @default.
- W2029125051 crossrefType "journal-article" @default.
- W2029125051 hasAuthorship W2029125051A5007726741 @default.
- W2029125051 hasConcept C113740112 @default.
- W2029125051 hasConcept C114793014 @default.
- W2029125051 hasConcept C118270999 @default.
- W2029125051 hasConcept C121332964 @default.
- W2029125051 hasConcept C127313418 @default.
- W2029125051 hasConcept C165205528 @default.
- W2029125051 hasConcept C16942324 @default.
- W2029125051 hasConcept C29452850 @default.
- W2029125051 hasConcept C538625479 @default.
- W2029125051 hasConcept C57879066 @default.
- W2029125051 hasConcept C58097730 @default.
- W2029125051 hasConcept C5900021 @default.
- W2029125051 hasConcept C77928131 @default.
- W2029125051 hasConcept C8058405 @default.
- W2029125051 hasConcept C97355855 @default.
- W2029125051 hasConceptScore W2029125051C113740112 @default.
- W2029125051 hasConceptScore W2029125051C114793014 @default.
- W2029125051 hasConceptScore W2029125051C118270999 @default.
- W2029125051 hasConceptScore W2029125051C121332964 @default.
- W2029125051 hasConceptScore W2029125051C127313418 @default.
- W2029125051 hasConceptScore W2029125051C165205528 @default.
- W2029125051 hasConceptScore W2029125051C16942324 @default.
- W2029125051 hasConceptScore W2029125051C29452850 @default.
- W2029125051 hasConceptScore W2029125051C538625479 @default.
- W2029125051 hasConceptScore W2029125051C57879066 @default.
- W2029125051 hasConceptScore W2029125051C58097730 @default.
- W2029125051 hasConceptScore W2029125051C5900021 @default.
- W2029125051 hasConceptScore W2029125051C77928131 @default.
- W2029125051 hasConceptScore W2029125051C8058405 @default.
- W2029125051 hasConceptScore W2029125051C97355855 @default.