Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029127096> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2029127096 endingPage "337" @default.
- W2029127096 startingPage "326" @default.
- W2029127096 abstract "An important aspect of the drug evaluation process is to have an integrated benefit-risk assessment to determine, using some quantitative measures, whether the benefit outweighs the risk for the target population. Chuang-Stein et al. proposed a five-category random variable along with three global measures of benefit-risk assessment. Assuming the cell probabilities follow a multinomial distribution, we propose a Bayesian approach for the longitudinal assessment of benefit-risk using these three global measures and a new measure. A Dirichlet distribution is used as the natural conjugate prior for multinomial cell probabilities, and the posterior distributions of cell-probabilities are recursively derived as the data from multiple visits become available. In a more generalized approach, a power prior is used through the likelihood function to discount the information from previous visits, and, again, the posterior distributions of the cell-probabilities at multiple visits are derived. The estimates of the posterior means and credible intervals for the four global measures are derived, and the decision rules based on the credible intervals are applied for the assessment of the four global measures. Using two simulated datasets generated under two different scenarios—one where benefit outweighs risk and the other where benefit does not outweigh risk—the performances of the four measures are evaluated using a Markov chain Monte Carlo (MCMC) technique. We illustrate of the methodology using clinical trial data." @default.
- W2029127096 created "2016-06-24" @default.
- W2029127096 creator A5021380975 @default.
- W2029127096 creator A5026070714 @default.
- W2029127096 creator A5050221788 @default.
- W2029127096 creator A5074611911 @default.
- W2029127096 date "2014-10-02" @default.
- W2029127096 modified "2023-09-28" @default.
- W2029127096 title "A Bayesian Approach for Benefit-Risk Assessment" @default.
- W2029127096 cites W1566333899 @default.
- W2029127096 cites W1965337629 @default.
- W2029127096 cites W1967396577 @default.
- W2029127096 cites W1997044913 @default.
- W2029127096 cites W2020946357 @default.
- W2029127096 cites W2028718255 @default.
- W2029127096 cites W2040308389 @default.
- W2029127096 cites W2046535780 @default.
- W2029127096 cites W2049236635 @default.
- W2029127096 cites W2070514085 @default.
- W2029127096 cites W2082260744 @default.
- W2029127096 cites W2083225519 @default.
- W2029127096 cites W2095022252 @default.
- W2029127096 cites W2143247311 @default.
- W2029127096 cites W2151622084 @default.
- W2029127096 cites W2158834553 @default.
- W2029127096 cites W2165729433 @default.
- W2029127096 cites W2538589307 @default.
- W2029127096 doi "https://doi.org/10.1080/19466315.2014.965845" @default.
- W2029127096 hasPublicationYear "2014" @default.
- W2029127096 type Work @default.
- W2029127096 sameAs 2029127096 @default.
- W2029127096 citedByCount "13" @default.
- W2029127096 countsByYear W20291270962016 @default.
- W2029127096 countsByYear W20291270962017 @default.
- W2029127096 countsByYear W20291270962018 @default.
- W2029127096 countsByYear W20291270962019 @default.
- W2029127096 countsByYear W20291270962020 @default.
- W2029127096 countsByYear W20291270962021 @default.
- W2029127096 countsByYear W20291270962022 @default.
- W2029127096 crossrefType "journal-article" @default.
- W2029127096 hasAuthorship W2029127096A5021380975 @default.
- W2029127096 hasAuthorship W2029127096A5026070714 @default.
- W2029127096 hasAuthorship W2029127096A5050221788 @default.
- W2029127096 hasAuthorship W2029127096A5074611911 @default.
- W2029127096 hasConcept C105795698 @default.
- W2029127096 hasConcept C107673813 @default.
- W2029127096 hasConcept C111350023 @default.
- W2029127096 hasConcept C12174686 @default.
- W2029127096 hasConcept C134306372 @default.
- W2029127096 hasConcept C149782125 @default.
- W2029127096 hasConcept C169214877 @default.
- W2029127096 hasConcept C177769412 @default.
- W2029127096 hasConcept C182310444 @default.
- W2029127096 hasConcept C192065140 @default.
- W2029127096 hasConcept C2908647359 @default.
- W2029127096 hasConcept C33923547 @default.
- W2029127096 hasConcept C38652104 @default.
- W2029127096 hasConcept C41008148 @default.
- W2029127096 hasConcept C57830394 @default.
- W2029127096 hasConcept C71924100 @default.
- W2029127096 hasConcept C99454951 @default.
- W2029127096 hasConceptScore W2029127096C105795698 @default.
- W2029127096 hasConceptScore W2029127096C107673813 @default.
- W2029127096 hasConceptScore W2029127096C111350023 @default.
- W2029127096 hasConceptScore W2029127096C12174686 @default.
- W2029127096 hasConceptScore W2029127096C134306372 @default.
- W2029127096 hasConceptScore W2029127096C149782125 @default.
- W2029127096 hasConceptScore W2029127096C169214877 @default.
- W2029127096 hasConceptScore W2029127096C177769412 @default.
- W2029127096 hasConceptScore W2029127096C182310444 @default.
- W2029127096 hasConceptScore W2029127096C192065140 @default.
- W2029127096 hasConceptScore W2029127096C2908647359 @default.
- W2029127096 hasConceptScore W2029127096C33923547 @default.
- W2029127096 hasConceptScore W2029127096C38652104 @default.
- W2029127096 hasConceptScore W2029127096C41008148 @default.
- W2029127096 hasConceptScore W2029127096C57830394 @default.
- W2029127096 hasConceptScore W2029127096C71924100 @default.
- W2029127096 hasConceptScore W2029127096C99454951 @default.
- W2029127096 hasIssue "4" @default.
- W2029127096 hasLocation W20291270961 @default.
- W2029127096 hasOpenAccess W2029127096 @default.
- W2029127096 hasPrimaryLocation W20291270961 @default.
- W2029127096 hasRelatedWork W1983631941 @default.
- W2029127096 hasRelatedWork W1995921209 @default.
- W2029127096 hasRelatedWork W2000948586 @default.
- W2029127096 hasRelatedWork W2134898590 @default.
- W2029127096 hasRelatedWork W2511968862 @default.
- W2029127096 hasRelatedWork W2739886334 @default.
- W2029127096 hasRelatedWork W2756408590 @default.
- W2029127096 hasRelatedWork W3071641020 @default.
- W2029127096 hasRelatedWork W3204476393 @default.
- W2029127096 hasRelatedWork W2460174320 @default.
- W2029127096 hasVolume "6" @default.
- W2029127096 isParatext "false" @default.
- W2029127096 isRetracted "false" @default.
- W2029127096 magId "2029127096" @default.
- W2029127096 workType "article" @default.