Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029127894> ?p ?o ?g. }
Showing items 1 to 48 of
48
with 100 items per page.
- W2029127894 abstract "Facial composite systems are used to create a likeness to a suspect in criminal investigations. Traditional, feature-based facial composite systems rely on the witness' ability to recall individual features, provide verbal descriptions and then select them from stored libraries of labelled features - a task which witnesses often find difficult. The EFIT-V facial composite system is based on different principles, employing a holistic (whole face) approach to construction.The witness is shown a number of randomly generated faces and is asked to select the one that best resembles the target. A genetic algorithm is then used to breed a new generation of faces based upon the selected individual. This process is repeated until the user is satisfied with the composite generated.This paper describes the main components and methodology of EFIT-V and showcases the strengths of the system." @default.
- W2029127894 created "2016-06-24" @default.
- W2029127894 creator A5024619073 @default.
- W2029127894 creator A5070411780 @default.
- W2029127894 creator A5081736620 @default.
- W2029127894 creator A5083509294 @default.
- W2029127894 date "2008-07-12" @default.
- W2029127894 modified "2023-10-01" @default.
- W2029127894 title "EFIT-V -" @default.
- W2029127894 cites W2031883733 @default.
- W2029127894 cites W2077629111 @default.
- W2029127894 cites W2105973235 @default.
- W2029127894 cites W4292023222 @default.
- W2029127894 doi "https://doi.org/10.1145/1389095.1389384" @default.
- W2029127894 hasPublicationYear "2008" @default.
- W2029127894 type Work @default.
- W2029127894 sameAs 2029127894 @default.
- W2029127894 citedByCount "11" @default.
- W2029127894 countsByYear W20291278942013 @default.
- W2029127894 countsByYear W20291278942014 @default.
- W2029127894 countsByYear W20291278942015 @default.
- W2029127894 countsByYear W20291278942016 @default.
- W2029127894 countsByYear W20291278942019 @default.
- W2029127894 countsByYear W20291278942022 @default.
- W2029127894 crossrefType "proceedings-article" @default.
- W2029127894 hasAuthorship W2029127894A5024619073 @default.
- W2029127894 hasAuthorship W2029127894A5070411780 @default.
- W2029127894 hasAuthorship W2029127894A5081736620 @default.
- W2029127894 hasAuthorship W2029127894A5083509294 @default.
- W2029127894 hasConcept C41008148 @default.
- W2029127894 hasConceptScore W2029127894C41008148 @default.
- W2029127894 hasLocation W20291278941 @default.
- W2029127894 hasOpenAccess W2029127894 @default.
- W2029127894 hasPrimaryLocation W20291278941 @default.
- W2029127894 hasRelatedWork W2093578348 @default.
- W2029127894 hasRelatedWork W2130043461 @default.
- W2029127894 hasRelatedWork W2350741829 @default.
- W2029127894 hasRelatedWork W2358668433 @default.
- W2029127894 hasRelatedWork W2376932109 @default.
- W2029127894 hasRelatedWork W2382290278 @default.
- W2029127894 hasRelatedWork W2390279801 @default.
- W2029127894 hasRelatedWork W2748952813 @default.
- W2029127894 hasRelatedWork W2899084033 @default.
- W2029127894 hasRelatedWork W3004735627 @default.
- W2029127894 isParatext "false" @default.
- W2029127894 isRetracted "false" @default.
- W2029127894 magId "2029127894" @default.
- W2029127894 workType "article" @default.