Matches in SemOpenAlex for { <https://semopenalex.org/work/W2029128645> ?p ?o ?g. }
- W2029128645 endingPage "1462" @default.
- W2029128645 startingPage "1453" @default.
- W2029128645 abstract "In recent years, graph theory has been successfully applied to study functional and anatomical connectivity networks in the human brain. Most of these networks have shown small-world topological characteristics: high efficiency in long distance communication between nodes, combined with highly interconnected local clusters of nodes. Moreover, functional studies performed at high resolutions have presented convincing evidence that resting-state functional connectivity networks exhibits (exponentially truncated) scale-free behavior. Such evidence, however, was mostly presented qualitatively, in terms of linear regressions of the degree distributions on log-log plots. Even when quantitative measures were given, these were usually limited to the r(2) correlation coefficient. However, the r(2) statistic is not an optimal estimator of explained variance, when dealing with (truncated) power-law models. Recent developments in statistics have introduced new non-parametric approaches, based on the Kolmogorov-Smirnov test, for the problem of model selection. In this work, we have built on this idea to statistically tackle the issue of model selection for the degree distribution of functional connectivity at rest. The analysis, performed at voxel level and in a subject-specific fashion, confirmed the superiority of a truncated power-law model, showing high consistency across subjects. Moreover, the most highly connected voxels were found to be consistently part of the default mode network. Our results provide statistically sound support to the evidence previously presented in literature for a truncated power-law model of resting-state functional connectivity." @default.
- W2029128645 created "2016-06-24" @default.
- W2029128645 creator A5008766623 @default.
- W2029128645 creator A5012222691 @default.
- W2029128645 creator A5028379363 @default.
- W2029128645 creator A5053874473 @default.
- W2029128645 creator A5055137812 @default.
- W2029128645 creator A5064039493 @default.
- W2029128645 creator A5073281532 @default.
- W2029128645 creator A5079883649 @default.
- W2029128645 date "2011-06-01" @default.
- W2029128645 modified "2023-09-27" @default.
- W2029128645 title "Non-parametric model selection for subject-specific topological organization of resting-state functional connectivity" @default.
- W2029128645 cites W1761383808 @default.
- W2029128645 cites W1964625711 @default.
- W2029128645 cites W1970695058 @default.
- W2029128645 cites W1974764791 @default.
- W2029128645 cites W1985002549 @default.
- W2029128645 cites W1987924998 @default.
- W2029128645 cites W1988581447 @default.
- W2029128645 cites W1991771535 @default.
- W2029128645 cites W1994801733 @default.
- W2029128645 cites W1996630013 @default.
- W2029128645 cites W1997661122 @default.
- W2029128645 cites W1999653836 @default.
- W2029128645 cites W2002367251 @default.
- W2029128645 cites W2002429803 @default.
- W2029128645 cites W2006096283 @default.
- W2029128645 cites W2008620264 @default.
- W2029128645 cites W2010432070 @default.
- W2029128645 cites W2028645759 @default.
- W2029128645 cites W2030902100 @default.
- W2029128645 cites W2057950952 @default.
- W2029128645 cites W2058046532 @default.
- W2029128645 cites W2060464767 @default.
- W2029128645 cites W2062229853 @default.
- W2029128645 cites W2062851009 @default.
- W2029128645 cites W2064125324 @default.
- W2029128645 cites W2067358463 @default.
- W2029128645 cites W2070650702 @default.
- W2029128645 cites W2071881327 @default.
- W2029128645 cites W2072739064 @default.
- W2029128645 cites W2097344592 @default.
- W2029128645 cites W2101334128 @default.
- W2029128645 cites W2102067213 @default.
- W2029128645 cites W2112090702 @default.
- W2029128645 cites W2114267373 @default.
- W2029128645 cites W2117207767 @default.
- W2029128645 cites W2125757815 @default.
- W2029128645 cites W2126650951 @default.
- W2029128645 cites W2129109788 @default.
- W2029128645 cites W2130476447 @default.
- W2029128645 cites W2131181615 @default.
- W2029128645 cites W2133015986 @default.
- W2029128645 cites W2134170969 @default.
- W2029128645 cites W2134858198 @default.
- W2029128645 cites W2136838610 @default.
- W2029128645 cites W2142635246 @default.
- W2029128645 cites W2143285014 @default.
- W2029128645 cites W2148726987 @default.
- W2029128645 cites W2156737316 @default.
- W2029128645 cites W2162010696 @default.
- W2029128645 cites W2168396492 @default.
- W2029128645 cites W2169015768 @default.
- W2029128645 cites W3103071483 @default.
- W2029128645 cites W3103362336 @default.
- W2029128645 cites W4235770099 @default.
- W2029128645 doi "https://doi.org/10.1016/j.neuroimage.2011.02.028" @default.
- W2029128645 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21338693" @default.
- W2029128645 hasPublicationYear "2011" @default.
- W2029128645 type Work @default.
- W2029128645 sameAs 2029128645 @default.
- W2029128645 citedByCount "9" @default.
- W2029128645 countsByYear W20291286452012 @default.
- W2029128645 countsByYear W20291286452013 @default.
- W2029128645 countsByYear W20291286452014 @default.
- W2029128645 countsByYear W20291286452016 @default.
- W2029128645 countsByYear W20291286452017 @default.
- W2029128645 countsByYear W20291286452018 @default.
- W2029128645 crossrefType "journal-article" @default.
- W2029128645 hasAuthorship W2029128645A5008766623 @default.
- W2029128645 hasAuthorship W2029128645A5012222691 @default.
- W2029128645 hasAuthorship W2029128645A5028379363 @default.
- W2029128645 hasAuthorship W2029128645A5053874473 @default.
- W2029128645 hasAuthorship W2029128645A5055137812 @default.
- W2029128645 hasAuthorship W2029128645A5064039493 @default.
- W2029128645 hasAuthorship W2029128645A5073281532 @default.
- W2029128645 hasAuthorship W2029128645A5079883649 @default.
- W2029128645 hasConcept C105795698 @default.
- W2029128645 hasConcept C114614502 @default.
- W2029128645 hasConcept C117251300 @default.
- W2029128645 hasConcept C154945302 @default.
- W2029128645 hasConcept C15744967 @default.
- W2029128645 hasConcept C169760540 @default.
- W2029128645 hasConcept C184720557 @default.
- W2029128645 hasConcept C185429906 @default.
- W2029128645 hasConcept C2776436953 @default.
- W2029128645 hasConcept C33923547 @default.